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BOLA Virus (EBOV) infection affects humans beings in the last four decades with the

deadliest outbreak at 2015 in West Africa, leaving more than 10,000 deaths. The virus harms
the liver of the patient when direct contact with contaminated body fluids or blood is occurred.
L polymerase is one of the viral proteins responsible for the viral RNA replication. Inhibition
of the viral polymerase succeeded is in stopping the infection of other viruses such as Hepatitis
C Virus (HCV). National Center for Biotechnology Information (NCBI) protein database has
2123 sequences for L polymerase. In present research, the sequence and phylogenetic analysis
are utilized to understand the non-redundant sequence coming from different countries. Based
on the sequence similarity, the solved structure of vesicular stomatitis virus (PDB ID: 5A22)
is used in this work to suggest the active site of the EBOV RdRp domain. Two newly released
sequences (APT69557.1 and ALX33626.1 for the Sudan and Zaire, respectively) are based on
the phylogenetic analysis, show interestingly a divert, mutation and distance from its subgroups
suggesting a new emerged isoform of EBOV RdRp. The active site motif, GDN, would be

targeted by polymerase inhibitors succeeded in other viruses to get stop the infection.
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Introduction

Ebola virus is stand out amongst the most harmful
pathogens known to contaminate people.! The first
recognized Ebola outbreak occurred at 1976, near
Ebola River in Zaire (now Democratic Republic
of Congo, DRC). In recent years, more than 20
flare-ups have happened in Africa, with the vast
majority of the known episodes happenned in the
previous 20 years.?

The mainroutes of Ebola virus transmission are
direct contact with asymptomatic Ebola patient’s
blood and body fluids (including but not restricted
to urine, feces, vomitus, saliva, and sweat) through
breaks in the skin or inoculation into the mouth,
nose or eyes. Human contamination can likewise
happen through contact with wild animals, such
as by hunting, butchering or preparing meat from
infected animals®. Ebolavirus (EBOV) causes an
exceptionally infectious zoonotic disease, affects
humans and other primates. Although the natural
outbreak of the EBOV is yet restricted to Africa,
fast methods for individual’s correspondence,
high viral transmissibility, and high mortality
rate have made the EBOV a serious global health
threat. Currently, there is no effective direct acting
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anti-EBOV drug. EBOV patients receive only
palliative therapy.*

Currently, there are no licensed vaccines or
treatments available to combat EBOV disease
and as such, research aimed at identifying
targets for therapeutic intervention is of high
priority. However, the classification of EBOV
as a biosafety level 4 (BSL-4) pathogen greatly
limits studies using a live virus.’ Nearly every
Ebola virus protein has been characterized for
therapeutic targeting potential.®

The EBOV genome is a negative-sense single-
stranded RNA and contains a viral envelope,
matrix, and nucleocapsid components. It
encodes seven structural proteins: nucleoprotein
(NP), polymerase cofactor (VP35, VP40, GP),
transcription activator (VP30, VP24), and RNA-
dependent RNA polymerase (L).”® Viral RNA-
dependent RNA polymerases (RdRp) are essential
for replication of RNA viruses and represent
important drug targets.’

CLUSTALQ ' is web -based software
service for performing fast and accurate multiple
sequence alignments (MSAs) of potentially large
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numbers of protein or DNA/RNA sequences. It is
the latest version of the famous and widely used
CLUSTAL MSAs . 12,

The aim of present work to determine
the active site of RdRp of EBOV to use in
docking method with anti-viral drugs. Study the
relationship of EBOV L polymerase sequence by
pairwise distance and phylogenetic tree.

Materials and Methods

Multiple sequence alignment

Multiple sequence alignment was performed
using the web server CLUSTALQ . The
alignment was ordered and represented using
Easy Sequencing in PostScript (ESPript 3.0)
web server'®M, ESPript 3.0 generates figures
of aligned sequences with secondary structure
information. It can serve as a tool for structure/
function analyses. ESPript reads text outputs from
multiple sequence alignment programs such as
CLUSTALQ and MULTALIN, as well as from
programs able to identify secondary structure
elements from structure files such as DSSP'S and
STRIDE'.

EBOV polymerase Sequence analysis

2123 of EBOV L polymerase protein
representing all recorded EBOV outbreaks
as retrieved from the National Center for
Biotechnology Information (NCBI) http://
www.ncbi.nlm.nih.gov/,'””. EBOV L polymerase
Sequence were downloaded from various
countries (Sudan, Reston, Bombali, Zaire, Tai
Forest and Bundibugyo) and synthetic construct
(that Artificial viruses to understand and prevent
viral disease).

EBOV polymerase Sequence selected

21 unique sequences for EBOV L polymerase
protein were selsected. Eight from Sudan, three
from Reston (United States), two from Bombali
(Sierra Leone), three from Zaire, two from Tai
Forest (Cote d’Ivoire), two from Bundibugyo
(Uganda) and one synthetic construct.

Pairwise distance method and (MEGA) software

Pairwise distance method is used to test
the distances between the aligned sequences
using Molecular Evolutional Genetics Analysis
(MEGA) software '8 in table 1.

Phylogenetic tree

Phylogenetic tree of the aligned sequences
is also calculated using MEGA software and
represented by the Cladogram.
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Results and Discussion

Sequence alignment

To obtain the correct alignment of a large
set of sequences, with some of them being only
distantly related, it is essential to elaborate an
optimal scheme for hierarchical alignment and
to delimit the portions of the sequences which
are optimal for revealing non-random similarity.
Sequences of various sets of negative-strand viral
RNA of Ebola polymerases have been downloaded
from NCBI http://www.ncbi.nlm.nih.gov/,"”., The
authors used CLUSTALQ website ' to perform
multiple sequence alignment of the 21 sequences
of RdRp of EBOV L polymerase. The total number
of downloaded sequences are 2123 according to
various countries (Sudan, Reston, Bombali, Zaire,
Tai Forest, Bundibugyo) and synthetic construct.

After reducing the sequences for the RdRp
domain, the number of non-redundant sequences
becomes 21. The alignment is represented by
ESPript 3.0 as shown in Fig.1. The alignment
consists of 1082 amino acids and includes distinct
blocks of amino acid residues which could be
considered conserved motifs. Overall the sequence
similarity is high (highlighted in red in Fig.l).
The highest sequence identity is 99.91%, and the
lowest is 80.74%. The secondary structure of the
cryo-EM solved L protein of vesicular stomatitis
virus (PDB ID: 5A22) is represented in the top of
the alignment. This solved structure represents the
best homolog for building the 3D model of EBOV
RdRp (89 % coverage and sequence Identity
17.4%). The sequence of the solved structure (PDB
ID: 5A22) is aligned against EBOV sequences.
Based on the multiple sequence alignment, GDN
motif (the reported active site of L protein of
vesicular stomatitis virus) is conserved in EBOV
with the two aspartate residues protruding from the
beta-turn structure (between B13 and 14). This is
suggested to be the active site for EBOV RdRp.

Pairwise distance analysis

The pairwise distance for the aligned
sequences is represented in table 1. Pairwise
distance, that is the minimum number of changes
necessary to convert one sequence into another,
for the sequences from the same country show
shorter values, while the distances increase when
aligning two sequences from different countries.
Interestingly, Sudan EBOV shows the shortest
distances compared to other EBOV sequence
under the study. This implies the phylogenetic
relevance as reported from the phylogenetic tree
shown in Fig. 2.
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Fig.1. Sequence alignment for the 21 RdRp Ebola virus. The alignment is performed using CLUSTAL omega
web server and visualized using ESPript software 3.0. The conserved amino acids are highlighted in red.
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The active site environment amino acids GDN are all conserved.
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TABLE 1. Pairwise distance for EBOV polymerase sequence.
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Fig. 2. A phylograph clarifying the evolutionary difference of RdRp Ebola virus. This phylogenetic tree is
constructed using MEGA software. This graph is in the form of Cladograph.

Phylogenetic tree

Phylogenetic tree is inferred from the
alignment as described in Materials and methods.
A consensus tree inferred using the Maximum
likelihood statistical method, bootstrap methods
(test of phylogeny) with 100 replications, LG
model and others with default parameters
(Figure 2).

The aligned sequences of EBOV can be
divided into two supergroup and branched into
four lineages. The first lineage includes two
subgroups;  Sudan and Reston. The second
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group contains three subgroup; Bombali, Zaire
and Tai Forest & Bundibugyo. Synthetic construct
lies in the same subgroup of Zaire which
indicates that there are fewer mutations than
the synthetic construct and Zaire sequences. Tai
Forest and Interestingly, the Sudan APT69557.1
sequence that released in January 2017 showed
that different lineage compared to other Sudan
sequences published in the period (August 2002
to January 2016). The same result is also reported
for Zaire Sequence ALX33626.1 which released
in November 2018. This indicates a new emerged
mutated isoform of the EBOV RdRp.
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Conclusion

EBOV RdRp active site is conserved among
different sequence. The sequences analysis in
the present study leads to RdRp inhibitors of
other viruses such as HCV can be used to target
EBOV L polymerase. Getting the 3D structure of
EBOV L polymerase is the next step to test such
polymerase inhibitors.

Among the observations of the phylogenetic
analysis; sequences are occurred leading to
distantly mutated isoforms and this should be as
a target for future investigation.
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