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INTRODUCTION  

 

One of the consequences of the unabated, indiscriminate, and uncontrolled 

development of industrialization and urbanization is the increase of levels of hazardous 

inorganic pollutants (including metals) emissions into the aquatic environment (Abdel-

Halim et al. 2016; Anbuselvan et al. 2018). Although metals are naturally occurring 
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As a result of the freshwater sacristy and growing demands for fish 

production, the usage of fresh Nile water (Ri-W) for fish cultivation has been 

banned and replaced by the usage of agricultural drainage water (ADW). The 

agricultural drains collect wastewater from various sources that pose a 

potential for metal pollution. Subsequently, affect the quality of water and 

sediments of the receiving fish farm and poses health hazards to cultured fish 

and man. Farms’ sediments act as a reservoir for metals and an internal source 

of metal. Thus, the evaluation of its metal contents and their indications are 

preferred for tilapia culture management. The present study investigates the 

levels of 7 metals (essential, and non-essential) in the surficial sediments of 

three fish farms irrigated with two different water sources (RiW, and ADW). 

Followed by an evaluation of sediment pollution and potential ecological 

risks using pollution indices (PI) and sediment quality guidelines (SQGs).  

The results indicated that the mean levels of the metals at the three fish farms 

follow the decreasing order of Fe (> 50,000 ppm) > Mn (700 ppm) > Zn (110 

ppm) > Cr (75 ppm) > Cu (55 ppm) > Cd = Pb (not detected). According to 

PI, all metals were depleted to mineral levels (enrichment factor (EF) < 2  and 

showed unpo  uted status and a most at  ase ine  eve s    1) relative to geo-

accumulation index (I geo), contamination factor (CF), and pollution loading 

index (PLI). According to ecological risks, the adverse effects due to Zn and 

Mn were unlikely to be noticed, in contrast, a slight risk may occur due to Cu, 

and Cr. There were no restrictions on using ADW for fish cultivation, where 

sediments were not considered a source of secondary metal pollution. 

Continuous monitoring and evaluation of the pollution status of farm 

sediments are recommended. 
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e ements that are found throughout the earth’s crust, anthropogenic activities are also 

responsible for their abundance and distribution in the environment. Metals are entered 

the aquatic environment e.g. via point and non-point sources mainly from industrial, 

agricultural, and municipal waste effluents (Ullah et al. 2016; Benson et al. 2018). 

From a biological point of view, metals can be sorted out according to their 

environmental impact and toxicity (Maret 2016; Shaaban et al. 2021b, c, a) Some of 

those elements are labeled as essential for life, such as Fe, Cu, Ni, Co, Mn, Cr, and Zn, 

and serve as micronutrients (Terech-Majewska et al., 2016). Other metals like As, Cd, 

Pb, and Hg are termed nonessential, because they have no known biological and/or 

physiological functions, and they are potentially toxic to organisms (Bhat and Khan, 

2011; Stankovic et al., 2014).  

Sediments are important sinks, reservoirs, and carriers of metals and they can reflect 

the current quality of the aquatic system as well as the historical development of certain 

hydrological and chemical parameters (Soliman et al., 2019; Wu et al., 2014). Sediments 

can adsorb metals in water, but they cannot permanently fix them. Where, some 

sediment-bound metals may be remobilized and released back to surrounding waters 

because of changing environmental conditions of sediment or surrounding water such as 

redox potential, acidification, electrical conductivity (EC), pH, temperature, sediment 

particle size, chelating agents, etc., (Dong et al., 2014; Goretti et al., 2016; Zhang et al., 

2016) causing secondary pollution to the water environment, producing unfavorable 

effects on living organisms (Xu et al. 2017). Thus, sediments play a convenient role in 

the assessment of metal pollution related to anthropogenic activities (Deng et al., 2022), 

specially sediments display less variations over time than dissolved metals in overlying 

water columns, they are preferred as a pollution monitoring approach (Abdel-Satar et al., 

2022). 

The pollution of persistent and non-biodegradable metals in the aquatic environment is 

a growing problem worldwide and is currently reaching an alarming rate (Ogoyi et al., 

2011; Sharifuzzaman et al., 2016), due to their drastic environmental impact on all 

aquatic organisms. Upon their accumulation in sediments as well as bioaccumulation and 

biomagnification into food chains, high concentrations of metals implicate aquatic flora 

and fauna affecting ecological balance, in addition to the quantity and quality of aquatic 

organisms (Kaoud et al., 2014; Shreadah et al., 2015). Subsequently, they become a 

threat to man and pose health hazards, especially for those who depend directly or 

indirectly on aquatic habitats for fish and water supplementation (Wang et al. 2018). 

In recent decades, fish farming has expanded significantly in response to the growing 

demand for aquatic products in developing countries (Nasr-Eldahan et al., 2021). Fish 

production from the aquaculture sector exceeds that of natural fisheries resources (FAO, 

2018), where aquaculture produces about 57 % of the worldwide fish requirements (Ottinger 

et al., 2016). Moreover, Egypt is considered one of the major fish producers and succeeded to 

get a yield of farmed fish (about 80% of the total Egyptian fish production) more than 
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captured fisheries (FAO, 2016; GAFRD, 2019).  Nile tilapia (Oreochromis niloticus, O. 

niloticus) is the most significant and familiar farmed species in Egypt (Abdel-hakim et al., 

2016).  

As a mitigation step of freshwater sacristy, water resources shortage, and growing 

demands for fish production, the Egyptian Law 124 / 1983 banned the use of freshwater 

for fish cultivation (Ghanem and Haggag, 2015).  Only governmental hatcheries and 

some governmental farms are allowed to use fresh Nile water (Ri-N) directly from the 

irrigated drains. About 90% of fish farms depend mainly on agricultural drainage waters 

(ADW), as a feeding water source to preserve current freshwater. (Soltan et al., 2016). 

These complimentary water sources have various physicochemical properties which 

subsequently affect the quality of farm water and sediment in addition to cultured fish.  

Thus the main objectives of the present study are 1) to provide a clear picture of the 

distribution characteristics of the seven metals (essential and nonessential) in the 

sediments of Tilapia fish farms irrigated by different water sources [the agricultural 

drainage water (ADW), and the fresh Nile water ( Ri-N)]; and 2) to evaluate the potential 

ecological risk levels on cultured fish using available Sediment Quality Guidelines 

(SQGs) by using the statistical indices like Enrichment Factor (EF), Geo-accumulation 

Index (Igeo), Contamination Factor (CF), and Pollution Load Index (PLI).  

 

MATERIALS AND METHODS  

1. Study area 

Kafr El-Shaikh governorate is categorized as the highest -nearly 50 % of the total 

aquaculture production-  fish producer among all Egyptian governorates (GAFRD, 2019). 

The tilapia farms are allocated around the drainage system of Burullus Lagoon.  Drain-7 is 

one of the main Burullus Lagoon drains, it ranks as the second discharging drain 

surrounding the Lagoon (Assar et al., 2016), and mainly collects the agriculture, 

industrial, domestic wastes, and effluents of fish farms from the surrounding areas (El-

Amier et al., 2017; El-Zeiny and El-Kafrawy, 2017).  The water of Drain-7 was classified 

as the most polluted drain due to its high metal levels relative to other drains surrounding 

Burullus Lagoon (Yones et al., 2012 and El-Batrawy et al., 2018).  

Three fish farms of Oreochromis noliticus were selected. The first two farms are 

representative of farms irrigated with ADW. They are situated at the upstream and 

downstream parts of the agricultural drain; Drain-7, they were termed Upstream Farm 

(FU) and Downstream Farm (FD), respectively. The third fish farm was away from 

drainage water (Drain-7) and was located at the agricultural irrigation canal of Nile water 

(Fig. 1), and it is represented as a control farm. Two ponds from each fish farm were 

chosen and from each pond, three sediment samples were collected to cover the sediment 

at the feeding water inlet and outlet in addition to one sample at the centre of each pond.  
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2. Sampling, preparation, and analysis  

Sixteen surficial sediment samples were collected from the three fish farms (FU, FD, 

and FC) during the fish harvesting season (October 2018), using a stainless-steel grab 

sampler. The collected samples were immediately stored in a labeled self-sealed 

polyethylene bag and then kept in an icebox for transportation to the land lab for analysis. 

The description of color, texture, shells, or other coarse fragments of the collected 

sediment samples were recorded. Firstly, each wet sample was divided into two portions, 

one of them was spread on a clean polythene sheet and left to dry in the air in a 

cleanroom. After dryness, the sediments were subsampled and then stored in an air-tight 

plastic vial for later analysis (dry weight). The other portion was used for the 

determination of the water content. 

 

 
Fig. (1). Satellite images showing the three selected fish farms; (A) three farms 

locations; (B) the upstream farm (FU), (C) downstream farm (FD), and (D) the control 

farm (FC) at Kafr El-Shaikh governorate, Egypt. 

 

 Granulometric and chemical characteristics: 

The granulometric analysis was commenced and based on the determination of two 

main fractions sand and mud by separating the coarser (both sand and gravel) fractions 

a ove 4ɸ  0.063 mm , from finer  mud  fractions  e ow  0.063 mm  using standard 

sieves  4ɸ  mounted on an e ectric shaker machine  La or-technique) and 10 minutes was 

applied as a standard time of sieving (Folk, 1974). The percentage of water content was 

determined by the difference in weights between wet (Ww) and dry (Wd) sediment 



Metals concentrations and ecological risk assessments of fish farms in Kafr El-Shaikh. 
 

 

381 

samples using the formula of: [(Ww-Wd/Ww) ×100]. The organic carbon content was 

determined by the oxidation of dry sediment with chromic acid (El-Wakeel and Riley, 

1975). The total carbonate percent was determined according to (Vogel, 1978), using the 

diluted hydrochloric acid HCl 10%.  

 Metals content: 

Bioavailable (mobile) and total metal concentrations (including Cu, Zn, Mn, Fe, Cr, 

Cd, and Pb) were analyzed in each sediment sample. Bioavailable metals (Bioav-M) were 

determined according to Standard Practices for Extraction of Trace Elements from 

Sediments (ASTM, 2003). A certain weight of the dry sample was extracted by shaking 

overnight using the diluted HCl (5%). Then the filtered extracted solution was subjected 

to the Bioav-M measurements using Inductively Coupled Plasma–Optical Emission 

Spectroscopy (ICP–OES, model ICP–OES 5100 vdv).   

On the other hand, the total metals (T-M) content was analyzed according to Oregioni 

and Aston, (1984) technique; by digestion of dry sediment with a mixture of (nitric: 

perchloric: hydrofluoric acid, 3: 2: 1). All reagents used were of analytical grade and all 

solutions were prepared with double-distilled water (DDW). Blanks and duplicates were 

regularly employed during testing. 

3. Pollution indices 

Different types of indices were applied to assess the sediment quality including the 

enrichment factor (EF), geo-accumulation index (Igeo), metal pollution index (MPI), 

contamination factor (CF), and pollution Loading Index (PLI). 

 Enrichment factor (EF) 

Such technique was greatly applied by normalizing a metal concentration to the 

texture or compositional characteristics of sediments. Fe was used as a geochemical 

normalization element to alleviate the variations produced by heterogeneous sediments 

(Gu et al., 2013; Zhuang and Gao, 2014). EF was calculated using the equation of  

   
             

            
  

Where, (M/Fe) sample is the ratio of the metal and Fe concentration of the sample, and 

(M/Fe) crust is the ratio of the metal and Fe in the crust. 

 Geo-accumulation index (Igeo) 

Praveena et al. (2010); and Sabo et al. (2013) stated that I geo was, first, used by Muller 

(1969) by applying the formula of I geo = Log 2 (Cn/1.5 Bn). Where Cn is the measured 

concentration of metal in sediment, Bn is the geochemical background value in average 

shale (Turekian and Wedepohl, 1961) of the element, n, 1.5 is the background matrix 

correction in factor due to lithogenic effects. The I geo consists of six grades ranging from 

unpolluted to very highly polluted as mentioned in Table 1. 

 Contamination factor (CF) 

The degree to which sediment is contaminated is often expressed as CF (Sabo et al., 

2013) from the equation of    
       

                  
. Where C metal is the total metal 
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concentration and C background is the average background value of the element from 

geologically similar and uncontaminated area. The used geochemical background values 

in the shale of the metals were earlier reported by (Turekian and Wedepohl, 1961). The 

CF value could fall into either of the levels of contamination. Where CF ranged from < 1 

to > 6 as illustrated in Table 1.  

 Pollution Load Index (PLI) 

The PLI was calculated by obtaining the n-root from the n-CFs that were obtained for 

all the metals (Tomlinson et al. 1980), using the formula of PLI 

 √                            
. Where n is the number of metals, CF is the 

contamination factor. The PLI values were varied from 0 (unpolluted) to 10 (highly 

polluted) (Table 1). 

Table 1. Terminologies for pollution classes on single and integrated indices. 
EF classes CF classes I geo classes PLI 

EF value Pollution CF value Pollution Igeo 
I geo 

class 
Pollution PLI Pollution 

EF < 2 
Depletion 

to mineral 
CF < 1 Low < 0–0 0 Unpolluted 0 Perfection 

2 ≤ EF <5 Moderate 1 ≤ CF ≥ 3 Moderated 0–1 1 
Unpolluted to 

moderated 
< 1 

Baseline 

levels 

5 ≤ EF < 20 Significant 3 ≤ CF ≥ 6 Considerable 1–2 2 
Moderated 

polluted 
> 1 Polluted 

20 ≤ EF < 40 Very high CF > 6 Very high 2–3 3 
Moderated to high 

polluted 
  

EF > 40 
Extremely 

high 
  3–4 4 Highly polluted   

    4-5 5 
Highly to 

extremely polluted 
  

4. Statistical analysis  

The granulometric, and metals levels of the three fish farms were tested for spatial 

significant differences by operating one-way ANOVA analysis and Tukey Duncan's 

multiple range tests, using IBM SPSS Statistics (version 25). The statistical significance 

was reported at the P < 0.05 level. 

RESULTS AND DISCUSSION 

 

 

1. Granulometric and chemical characteristics of sediments  

The granulometric analysis of sediments is a critical factor affecting the mobility and 

dispersion of metals in the fish farm environment. The grain size distributions for the 

sediments of the selected fish farms (FU, FD, and FC) were almost muddy (composed of 

100% mud), as sediment of most surrounding drains discharge in Burullus Lake (Younis 

et al., 2014) (Masoud et al., 2011). The water content percentages were 14, 18, and 15 % 

for FU, FD, and FC, respectively (Fig. 2a). 

Generally, the carbonate content showed no clear variation between the three fish 

farms (Fig. 2b), and sediments of FC showed a relatively high carbonate content (about 
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36 %). However, the present results were lower than those values reported in the 

surrounding area of Drain-7 and Burullus lagoon (El-Amier et al., 2017; Masoud et al., 

2011). That decline could be attributed to the muddy sediments, that matched the 

previously recorded relation between the grain size and carbonate levels in sediment, the 

finer-grained sediments were mainly poor with carbonate content (Abdel-Moati and El-

Sammak, 1997).  

Van Geest et al. (2011) stated that the total organic carbon (TOC) may influence metal 

bioavailability, and the accumulation of OC in surface sediments was a significant factor 

controlling the mineralization processes and the exchange of metals between the sediment 

and overlying water (Seiter et al., 2004). The current TOC concentrations in the study 

area showed a narrow range of fluctuation between 1.2 % (at FD) and 2.4% (at FC) as 

shown in Fig. (2c). it is worthy to mention that the present TOC values were close to 

those values previously recorded at Burullus, Manzallah, and Bardawel lagoons with 

mean values of 1.9, 2.5, and 1.0, respectively (Shreadah et al., 2012). 
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Means with the same letter within the same histograme for each metal are not significantly different (P < 0.05). 

Fig. (2). The chemical characteristics of sediment samples (a) water content (%), 

(b) carbonate content (%), and (c) total organic carbon (%) of the three selected 

fish farms (FU, FD, and FC) at Kafr El-Shaikh governorate, Egypt. 

 

2. The abundance of metals in fish farm sediments: 

The results of total metals and their bioavailable (mobile) fraction of essential metals 

(include Cu, Zn, Mn, and Fe) and non-essential metals (include Cr, Cd, and Pb) are 

presented in Fig. 3. It is worthy to highlight that the concentrations of Cd and Pb were 

below the detection limits of 0.012 and 0.003 ppm. 

The abundance of both total (T) and bioavailable (Bioav) metals was mimic to each 

other and following a decreasing order Fe > Mn > Zn > Cr > Cu > Cd = Pb (not detected). 

Statistically, T-metals in the surficial sediments of the study area can be categorized into 

three main groups according to their levels of concentration. The first group contained 

A B C 
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extremely elevated levels of Fe with concentrations > 51,000 ppm. The second group 

contained Mn, Zn, Cu, and Cr with an intermediate concentration from 41 – 790 ppm. 

The last group contained Cd, and Pb (not detected).  

Spatially, sediments of FD exhibited relatively high concentrations of most metals (T- 

and Bioav-M) when compared with the other farms, while FC showed the lowest levels 

for all Bioav-M fractions.  

A comparison  etween the present meta s’ contents in the sediments of the study area 

with their corresponding ones in standard shale sediments and continental crust is shown 

in Table 2. The results showed that the concentration means of T-Fe were the highest at 

FC (57067±135 ppm), while the highest Bioav-Fe fractions were recorded at FD (12899 

±1683 ppm). The majority of Fe levels were more than the freshwater guidelines (EPA, 

2006). That elevated levels of Fe were because Fe is the most abundant element in the 

earth's crust, it ranks the 10
th

 most abundant constituent and represented about 34.6 % of 

the total mass of the Earth's crust (Edwards 2010). The current values were close to those 

corresponding values of Fe in the shale and continental crust. 

The essential micronutrients such as T-Mn, and -Cu were recorded in the sediments of 

the three fish farms at levels higher than those freshwater guidelines (EPA, 2006). On 

other hand, T-Mn content in the three fish farms sediments was lower than those obtained 

in standard rocks (Table 2). While T-Cu levels in sediments of FU and FC (< 55 ppm) 

were close to standard rocks, in contrast, the FD attained relatively elevated levels of Cu 

(average 64 ppm). The last studied essential metal concentrations (Zn) fluctuated between 

68 and 156 ppm. However, FC sediments showed the least levels of T-Zn (with an 

average of 90 ±19 ppm), it was higher than those values of standard rocks and close to 

the freshwater guideline (EPA, 2006). 

Regarding non-essential metal T-Cr, its concentration levels (mean concentration < 81 

ppm) were lower than those values of standard rocks (Taylor, 1964; Turekian and 

Wedepohl, 1961) and more than freshwater guidelines (EPA, 2006). Concerning Pb and 

Cd, the hazardous metals with potential consequences on the environment, endogenous 

biota, and human health (Abdel-Satar et al., 2022), their concentrations were below the 

detection limits and lower than guidelines of freshwater and standard rocks (Table 2). 

3. Assessment of sediment pollution and ecological risks  

Several types of pollution indicators were employed to evaluate the sediment quality 

of fish farms and the suitability of tilapia culture. The best indices include three single 

indices, namely, Enrichment Factor (EF), Geo-accumulation Index (I geo), and 

Contamination Factor (CF). While Pollution Load Index (PLI) is an integrated index that 

was also applied (Abubakar et al., 2018; Duncan et al., 2018). 

The objective of the indices is to transform complex sediment quality data into 

understandable and usable information for the public. Several authors (Naifar et al., 2018; 

Praveena et al., 2010; Sabo et al., 2013) have proposed pollution impact ranges to 
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convert the calculated numerical results into comprehensive descriptive bands of 

pollution ranging from low to high intensity.   

The results of EF (Fig. 4a) revealed all investigated metals of the surficial sediments 

of the three fish farms were depleted to mineral levels (EF values < 2). According to the 

calculated I geo values, most metals showed a class 0 of the geo-accumulation index 

(values < 0), with unpolluted indication. While I geo values of Zn and Cu at sediments of 

farms irrigated with agricultural drainage water were of class 1 (values were from 0 to 1), 

reflecting the condition from unpolluted to moderated polluted (Fig 4b).  The order of the 

computed CF values was Pb (0.0) < Cd < Mn < Cr < Fe < Cu < Zn (1.7), meaning that 

fish farms sediments were low contaminated by Pb, Cd, and Mn, and from low to 

moderately contaminated by the rest of metals (Fig 4c). The overall and integrated index 

of PLI (Fig. 4d) revealed that the three farms were a most at  ase ine  eve s    1).  

On other hand, the adverse effects of the pollutant on benthic aquatic organisms were 

usually determined by classifying the sediments according to sediment quality guidelines 

(SQGs). SQGs are commonly accomplished to make a preliminary evaluation of 

sediment toxicity in the absence of direct biological effects data. Where the establishment 

of biological response of sediment-bound contaminants requires an assessment of their 

toxicity and bioaccumulation.  

An example of SQGs was suggested and referred to as the threshold effect level (TEL) 

and the probable effect level (PEL) which provides a reliable basis for assessing sediment 

quality conditions in aquatic ecosystems (MacDonald et al., 2000). Applying the SQGs to 

sediments of the present study (Table 2), it was shown that the three fish farms had values 

of Zn, and Mn below the TEL level which means the harmful effects due to Zn and Mn 

are unlikely to be observed. Unlike, Cu, and Cr, their concentration values were above 

TEL and below PEL which reflect adverse effects that may occasionally occur for 

sensitive organisms, but only a slight risk may have taken place. 

Moreover,  Persaud et al., (1993), Batts and Cubbage (1995), Suter and Tsao (1996), 

and  Jones and Suter II (1997) summarized ecological sediments guidelines and define 

three levels of chronic, long-term effects on benthic organisms as 1) No-Effect Level: no 

toxic effects have been noticed on fish or sediment welling organisms; as well as no 

predicted biomagnification through food chain; 2) Lowest-Effect Level: reveals a 

contaminate level that can be tolerated by most benthic organisms; 3) Severe-Effect 

Level: shows the expected distinct disturbance of sediment-dwelling organisms. 

Consequently, comparing the results of the present study with those guidelines (Table 2), 

it was noticed that majority of studied metals values were between the lowest- and 

severe- effect levels. While Zn values were below the lowest effect levels, addition to Cd, 

and Pb values showed no-effect levels. 
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Letters in blue and red colours refers to one-way ANOVA reults for total- and bioavailabale- metal farction, respectively.  

Means with the same letter within the same histograme for each metal are not significantly different (P < 0.05). 

Fig. (3). The mean concentration values of total metals and its bioavailable fraction 

of (A) iron, Fe, (B) manganese, Mn, (C) zinc, Zn, (D) cupper, Cu, and (E) chromium, 

Cr of the three fish farms sediments. 
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Fig. (4). Heat map shows different pollution indices (a) enrichment factor, EF, 

(b) geo-accumulation factor, I geo, (c) contamination factor, CF, and (D) 

pollution loading index, PLI, of the study area. 
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Table 2. Comparison between mean levels of total-metals concentration in the study 

area and sediment quality benchmarks for freshwater.  

BDL= Below detection limit (<0.012, and < 0.003 ppm for Cd, and Pb, respectively)   

ARCS = Assessment and Remediation of Contaminated Sediments Program;  Ontario MOE = Ontario Ministry of the Environment.   

TEL = threshold effects level  PEL= probable effects level NEL = No Effect level  

Low = lowest effect level and is the 5th percentile of the screening level concentration; Severe = severe effect level and is the 95th percentile of the 

screening level concentration   
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