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 INTRODUCTION 

The past couple of decades witnessed a remarkable spread of aquaculture in Egypt 

(Kaleem and Sabi, 2021) that surpassed the capture of fisheries. It is expected that aquaculture 

will be the main source of aquatic animal nutrition in the coming years (Ahmed et al., 2020). 

Since the Egyptian irrigation law prohibits the usage of Nile water in fish farming, agricultural 

drainage water has become Egypt's primary aquaculture source (Soliman & Yacout, 2016). 

Interestingly, this source is contaminated with domestic industrial effluents, sewage, and 

agrochemicals (Khallaf et al., 1998) as well as elevated concentrations of pesticides, runoff-

derived fertilizers, and heavy metals (Authman et al., 2013). These contaminants have been 
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The current study was conducted to assess the ability of chitosan and  chitosan 

nanoparticles to alleviate the effect of heavy metals in the Nile tilapia 

(Oreochromis niloticus). The experimental design was completely randomized 

with a 2 x 3 factorial design; two protein sources (fish and gluten meals) and 

three forms of chitosan “CS” (zero-chitosan, CS, and CS nanoparticles “CSNP”). 

A total number of 270 Nile tilapia fingerlings were randomly distributed among 

18 tanks (water capacity = 55 L). The overall duration of the experiment was 82 

days.  

Results revealed that fish fed on a fish meal-based diet recorded the highest 

retained heavy metals followed by those fed gluten meals. Moreover, 

supplementation of diets with CS and CSNP lowered the concentration of the 

retained heavy metals in the fish's whole body, especially CSNP.  

Consequently, it is recommended to use CS and CSNP, especially CSNP as feed 

additives for fish cultured in agricultural and sewage wastewaters, loaded with 

high concentrations of heavy metals to ameliorate the fish quality. 
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shown to have negative impacts on the quality of farmed fish and, consequently, on human 

health as an end user. 

Heavy metals are categorized into essential and non-essential. Essential heavy metals (as, 

Cu, Zn, Fe, Cr, and Mn) are required in low concentrations for the body welfare (Santos et al., 

2014). On the other hand, non-essential heavy metals (as, Cd and Pb) do not have biological 

functions in living organisms (Gati et al., 2016). Heavy metals enter the aquatic food chain via 

direct consumption of water or food (Emam and Soliman, 2021). Being enduring and non-

biodegradable, heavy metals can cause various diseases to living organisms once accumulated in 

the aquatic ecosystem (Bayomy et al., 2015). Accumulation of heavy metals in tissues and 

organs of fish entering the food chain has been reported to reach the highest rate in relation to the 

end users (Akan et al., 2009). 

Recently, interest in removing heavy metal ions from aqueous solutions has increased, 

both for the control of pollution and for the recovery of raw materials. Adsorption-based 

technologies have emerged as one of the most effective alternatives for treating industrial 

wastewater contaminated with a variety of pollutants, both inorganic (Fu & Wang, 2011) and 

organic (Vocciante et al., 2019), due to the availability of various types of low-cost and 

environmentally friendly adsorbents, their ease of operation, as well as their low processing and 

instrumentation costs. Metal oxides, polymers, activated carbon, carbon nanotubes, wastes of 

agriculture, and engineered as well as natural clays (Chen et al., 2011) have been effectively 

used to adsorb heavy metals from aqueous solutions. This becomes even more noteworthy when 

using low-cost sorbents derived from industrial waste (Pietrelli et al., 2019), as it would provide 

a double benefit to the environment while adhering to operational principles, such as the 

“Circular Economy” and “near-zero discharge” of harmful waste (Pietrelli et al., 2018) 

mandated by the most recent European legislation. One of the highly promising and economical 

substances in this area is chitosan (CS) (El-Naggar et al., 2019). 

Chitin is the second most abundant natural linear homopolysaccharide after cellulose 

(Fadlaoui et al., 2019). Chitosan, (β-(14)-2-amino-2-deoxy-β-D-glucose), is the partially N-

deacetylated analog of chitin and is nontoxic biodegradable hydrophilic heteropolysaccharide 

(Robertson, 2014). CS has a high potential for metal ion adsorption because of its amino and 

hydroxyl groups which can function as chelation sites for metal ions. It combines with several 

heavy metals to generate complexes, and its amine groups serve as heavy metal coordination 

sites (Wan Ngah & Fatinathan, 2010; Chauhan et al., 2012). Amongst the most  intriguing 

benefits of chitosan is its adaptability, since the material can be readily and physically changed to 

produce various polymer shapes (as beads (Chiou & Li, 2003), membranes (Pietrelli & 

Xingrong, 2004), and sponges (Ko et al., 2010)) for different applications. Over and above, 

chitosan can be easily modified chemically to increase its applications (Guibal, 2004). 

Numerous critical evaluations on the diverse applications of chitosan as an ecologically benign 

biomaterial have recently been published, spanning from the medical industry to environmental 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/polysaccharide
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/chitin
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protection and food technology (Gamage & Shahidi, 2007; Zhao et al., 2018; Darweesh et al., 

2020; Salaah et al., 2021; El-Naggar et al., 2020, 2022).  

The field of nanotechnology has experienced a remarkable growth (El-Naggar et al., 

2019). Nanoparticles have the ability to treat both human and animal diseases as well as many 

other health-related problems (El-Naggar et al., 2020). Their small size increases the available 

surface area to interact with biological systems, facilitates efficient cellular uptake and deep 

penetration into target sites, and increases the bioavailability of essential compounds (Alishahi et 

al., 2011). The efficacy of chitosan nanoparticles (CSNP) has been demonstrated, serving as 

immune enhancers in Oreochromis niloticus (El-Naggar et al., 2021), as a feed additive that 

improves the growth and meat quality of O. niloticus (El-Naggar et al., 2022), and as a chelating 

agent for heavy metals in water treatment (Abd-Elhakeem et al., 2016). 

Nile tilapia (Oreochromis niloticus) is the main fish farmed in East Africa and the third 

most important fish group cultured globally after salmon and carp (El-Sayed, 2006). Due to its 

low cost, it is regarded as the most popular source of protein in Egypt (Kaleem and Sabi, 2021). 

The success of O. niloticus in aquaculture is due to its ability to eat different types of foods, 

survive in low-oxygen environments (El-Sayed, 2019), and its strong immune system that 

increases the ability to withstand stress conditions (Abdel-Tawwab et al., 2008; Salaah, 2021). 

Unfortunately, there isn't any prior research to use as a guide for the efficiency of 

chitosan (CS) and chitosan nanoparticles (CSNP) in eliminating heavy metals from O. niloticus. 

Accordingly,  the current study aimed for the first time to evaluate the effect of CS and CSNP in 

the removal of heavy metals from O. niloticus.  

MATERIALS AND METHODS 

1. Experimental fish and culture technique 

The present study was carried out at the Fish Nutrition Laboratory, Department of Animal 

Production, Faculty of Agriculture, Cairo University, Egypt. Mixed sex O. niloticus fingerlings, 

with an average (SE) initial body weight of 15.3 (±0.08) g, were collected from a local hatchery 

located in Kafr El-Sheikh Governorate, Egypt. Under controlled thermal conditions, a total of 

270 O. niloticus fingerlings were randomly distributed into 6 different treatments with a triplicate 

of 15 fish each. The water capacity of each tank was 55 L. Fish were grown out under laboratory 

recirculating aquaculture system (RAS) with a flow rate of 0.4 L/min. Fish were acclimatized to 

the experimental conditions for a week prior to the feeding trial.  Fish were fed a floating diet of 

30% crude protein at 2% of the fish body weight twice daily (10 a.m. and 4 p.m.). During the 

experiment, the fish were fed till apparent satiation. Fish weight was measured every 15 days, 

and the number of dead fish was recorded daily. The overall experiment lasted 82 days.  
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2. Experimental design and diets 

The experimental design was completely randomized with a 2 x 3 factorial design, with two 

protein sources, fish meal (FM) and gluten meal (GM), and three forms of chitosan (zero-

chitosan, CS, and CSNP). Fish meal basal diet was formulated and 100% of fish meal was 

replaced with GM in gluten meal-basal diet. Each of the basal diets were supplemented with CS 

or CSNP (0.5%)  to design six isonitrogenous (30% crude protein) and isocaloric (4500 kcal/kg) 

for O. niloticus  (NRC, 2011). The dose was managed according to Wang and Li (2011). 

The proximate composition of the experimental diets (Table 1) was analyzed in the Regional 

Center for Food and Feed, Agriculture Research Center, Ministry of Agriculture. The 

experimental diets were prepared by blending the ingredients into a homogeneous mixture and 

then passing it through a local minced meat machine, dried overnight at room temperature and 

stored in plastic bags at 4°C till furtherly used. The extraction of CS from Procambarus clarkii 

wastes and the preparation of CSNP as well as their characterization were profoundly discussed 

in the study of El-Naggar et al. (2019). 

Table 1.  Formulation and proximate composition of fish meal and gluten meal-based diets supplemented 

with CS or CSNP 

Ingredient (g/100g) 
FM-based diet GM-based diet 

FM FMCS FMCSNP GM GMCS GMCSNP 

Fish meal 14 14 14 - - - 

Gluten - - - 14 14 14 

Soybean 34 34 34 34 34 34 

Corn 8.43 7.93 7.93 8.43 7.93 7.93 

Oil 6 6 6 6 6 6 

Bran 35 35 35 35 35 35 

Vitamin and mineral premix* 2 2 2 2 2 2 

Vitamin C 0.05 0.05 0.05 0.05 0.05 0.05 

Carboxy methyl cellulose 0.50 0.50 0.50 0.50 0.50 0.50 

Butylated hydroxytoluene 0.02 0.02 0.02 0.02 0.02 0.02 

Chitosan - 0.50 - - 0.50 - 

Chitosan nanoparticles - - 0.50 - - 0.50 

Total 100 100 100 100 100 100 

Proximate composition (% dry matter) 

 Moisture 7.8 7.9 7.7 7.8 8 8.6 

 Crude protein 30.7 30.5 30.8 29.1 29.5 29.5 

 Crude lipid 8.62 8.46 8.57 8.22 8.23 8.17 

 Ash 6.8 6.9 6.8 5 5.3 5.3 

 Crude fiber 6.73 6.99 6.94 7.02 6.91 6.89 

 Nitrogen free extract (NFE) 39.35 39.25 39.19 42.86 42.06 41.54 

 Gross energy kcal/kg 4469 4449 4472 4501 4486 4458 

* Provides per kg of diet: retinyl acetate, 3,000 IU; cholecalciferol, 2,400 IU; all-rac-α-tocopheryl acetate, 60 IU; 

menadione sodium bisulfite, 1.2 mg; ascorbic acid monophosphate (49 % ascorbic acid), 120 mg; cyanocobalamin, 

0.024 mg; d-biotin, 0.168 mg; choline chloride, 1,200 mg; folic acid, 1.2 mg; niacin, 12 mg; d-calcium pantothenate, 26 

mg; pyridoxine. HCl, 6 mg; riboflavin, 7.2 mg; thiamin. HCl, 1.2 mg; sodium chloride (NaCl, 39 % Na, 61 % Cl), 3,077 mg; 

ferrous sulfate (FeSO4·7H2O, 20 % Fe), 65 mg; manganese sulfate (MnSO4, 36 % Mn), 89 mg; zinc sulfate (ZnSO4·7H2O, 

40 % Zn), 150 mg; copper sulfate (CuSO4.5H2O, 25 % Cu), 28 mg; potassium iodide (KI, 24 % K, 76 % I), 11 mg; Celite 

AW521 (acid-washed diatomaceous earth silica), 1,000 mg Agri-Vet Co., Cairo, Egypt. 
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3. Water quality parameters 

Water temperature (C) was registered using Senso Direct Oxi 200. The pH value was 

determined using Milwaukee-pH600 digital pH meter twice a week. The alkalinity (mg/L) was 

estimated once a week by titration with sulfuric acid till the pH reached 4.5 (Boyd & Tucker, 

1992). The total ammonia nitrogen (NH3-N; mg/L) and nitrite (NO2
-
; mg/L) values were 

evaluated according to Boyd and Tucker (1992), using water analysis photometer (MultiDirect 

Lovibond) once a week. Following the instruction manual of the MultiDirect Lovibond, the total 

ammonia nitrogen concentration, including the ionized (NH4
+
) and unionized (NH3) forms, was 

calculated by multiplying the resultant value of NH3-N by a conversion factor, 1.29 and 1.22, for 

NH4
+
 and NH3, respectively. 

4. Heavy metals analysis 

Along with the 270 fingerling samples, a sample of thirty fish was gathered to serve as an 

initial one at the beginning of the experiment. At the end of the experiment, fish were 

anesthetized using clove oil (40 mg/L), and then six fish from each tank were randomly 

selected to serve as a final sample. The fish were then killed, oven-dried at 60−70°C, ground 

into homogenous powder and stored at -20ºC until further analysis.  

The determination of the heavy metals concentrations, in their total form, in fish carcass 

involves two main steps; namely, digestion and analysis. The digestion of the fish carcass, as 

well as heavy metals analysis were measured according to the Standard Method of the 

American Public Health Association (APHA-3111B, 2017) at the Central Laboratory of 

Faculty of Science, Ain Shams University. The digestion was performed using CEM 

Microwave Sample Preparation System (MDS-2000, USA).  

Procedure of digestion: One gram of the ground samples was placed in vessels and 

concentrated nitric acid (HNO3) was added. The vessels were left overnight to allow sufficient 

reaction. Afterwards, the vessels were placed into a turntable connected to the system and a 

heating program and left to run till digestion completion. Eventually, the samples were left to 

cool for 5min, and the turntable was removed from the system. Heavy metals concentrations of 

the fish carcass were measured using Flame Atomic Absorption Spectrophotometer (Savant 

AA, GBC Scientific Equipment). The equipment is provided with acetylene as a source of fuel 

and air as an oxidant. 

Procedure of analysis: The digested samples were added to 25ml distilled water and placed in 

the spectrophotometer. The concentration of each heavy metal was measured at a certain 

wavelength and slit width. Six heavy metals were analyzed (Cu, Zn, Fe, Cd, Pb, Cr, and Ni), 

and the resultant concentrations were expressed in mg/kg. 
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The retained concentrations of heavy metals (X; mg/kg) were calculated according to 

Hernández and Roman (2016), with slight modifications using the following formula 

   (     )       (     )        

where, BW: fish body weight (g); HM: heavy metal concentration (mg/kg) 

 

5. Statistical analysis 

The experiment was conducted on triplicates. Jeffreys's Amazing Statistics Program (JASP 

0.14) was used to carry out two-way analysis of variance (ANOVA) to detect the impact of the 

dietary protein source, chitosan forms, and their interactions on the heavy metals’ retention in the 

whole fish. Tukey’s test (Abdi & Williams, 2010) was used to determine the differences among 

the experimental treatments. 

 RESULTS AND DISCUSSION 

1. Water quality parameters 

Water quality has a great impact on aquaculture; it affects the health status, behavior, and 

growth of fish (Osman et al., 2021). Generally, water temperature has a remarkable impact 

on the initiation and the course of a number of fish diseases, with a considerable effect on the 

growth rate. The optimum temperature required, for rearing O. niloticus, varies from 25 to 

27°C according to DeWalle et al. (1995). In the present experiment, the readings of water 

temperature varied from 21.53 to 26.90 °C, with an average of 24.51°C (Table 2). 

Throughout the experiment, the pH values were alkaline (Table 2) fluctuating between 

7.97 to 8.45 with an average of 8.28 . The optimal pH range for O. niloticus is from 6 to 9 

(DeWalle et al., 1995). Destruction and mortality of fish species are associated with the 

alkaline pH values above 9.2 and acidity below 4.8 (FAO, 1993).The gills are the most 

susceptible organs to a great damage due to extremely high or low pH values, where 

hemorrhages may occur in the gills and on the lower part of the body. Moreover, excessive 

mucus secretion, often containing blood, can be observed in post mortem examination of the 

gills and skin (FAO, 1993).  

During the current study, the total alkalinity fluctuated from 299.2 to 396 mg/L with a 

mean of 334.53 mg/L, and this confirms that the aquaria water is on the alkaline side  (Table 

2). The total alkalinity of water is the concentration of titratable bases, mainly carbonates 

(CO3
-2

) and bicarbonates (HCO3
-
), which is expressed as CaCO3 equivalents. In order to 

achieve an optimum fish growth performance, water used for aquaculture must have a total  

alkalinity ≥ 20 mg/L CaCO3 (in fresh water) (Andrade et al., 2007). Notably, water with low 

total alkalinity is more susceptible to acidification than water with high total alkalinity.  
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Total Ammonia nitrogen (NH3-N) includes both the ionized form (ammonium, NH4
+
) and 

the unionized form (ammonia, NH3). The latter form is highly toxic for fish (Chervinski, 

1982). The toxicity of the total ammonia nitrogen is highly apparent if the level is higher than 

1.0 mg/L (DeLong et al., 2009). It is worth mentioning that the toxicity of ammonia is 

inversely proportional with the dissolved oxygen and CO2, whereas directly proportional with 

the pH value (Chervinski, 1982). In the present study, NH3-N concentrations varied from 0 to 

0.31 mg/L with a mean of 0.14 mg/L (Table 2). NH4
+ 

concentrations varied from 0 to 0.38 

mg/L with a mean of 0.18 mg/L, while the concentrations of NH3 ranged from 0 to 0.40 mg/L, 

with an average of 0.17 mg/L.  

During the nitrification process, ammonia is oxidized into nitrite (NO2) then converted into 

nitrate (NO3) through nitrifying bacteria grown on suspended organic matter. Nitrite has a 

toxic effect on fish, including tilapia, since it causes growth retardation and disturbs the 

physiological functions of the fish as well (Sudharsan et al., 2000). On the other hand, nitrate 

is relatively non-toxic to tilapia; however, chronic exposure to nitrate significantly reduces 

growth and affects the health status of juvenile O. niloticus in recirculating aquaculture 

systems (Monsees et al., 2017). Throughout the experiment, the level of nitrite (NO2) ranged 

from 0.04 to 1.35 mg/L, with an average of 0.42 mg/L. The optimum tolerable range of nitrite 

(NO2) for the culture of O. niloticus is from 0.08 to 1.0 mg/L (Otoo et al., 2019) (Table 2). 

Nitrite concentration above 5.0 mg/L is extremely toxic for tilapia (DeLong et al., 2009). 

The present study showed that the values of water quality parameters used for rearing O. 

niloticus under RAS system were quite adequate (Fig. 1). This result is coincided with that of 

Cruz and Ridha (2001).  

Table 2. Values of water quality used in the recirculating aquaculture system during the 

experimental study 

Parameters 
Measured Values 

Min – Max (Mean) 
Optimum values    (Reference) 

Water Temperature (°C) 21.53  − 26.90 (24.51) 25 – 27            (DeWalle et al., 1995) 

pH 7.97 − 8.45 (8.28) 6 – 9                  (DeWalle et al., 1995) 

Total alkalinity (mg/L) 299.2 – 396 (334.53)  ≥ 20                 (Andrade et al., 2007) 

Total ammonia nitrogen (mg/L) 0 − 0.31 (0.14) < 1                     (DeLong et al., 2009) 

Nitrite (mg/L) 0.04 − 1.35 (0.42) 0.08 – 1            (Otoo et al., 2019) 
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2. Heavy metals analysis 

In the aquatic ecosystem, heavy metals are regarded as the paramount pollutants, since they 

are present throughout the ecosystem and are detectable in trace amounts (Authman et al., 

2015). They are detrimental for fish health, either above the threshold level, as in case of non-

essential heavy metals, or below and above the permissible concentration, for essential heavy 

metals (Sfakianakis et al., 2015). Most of these metals are accumulated in tissues, causing fish 

poisoning, inducing pathological changes, affecting the reproduction and suppressing the 

immune system. Consequently, fish are used as bio-indictors for monitoring heavy metal 

pollution (Authman et al., 2015). 

The effect of CS and CSNP on heavy metals’ retention in O. niloticus (whole fish) fed fish 

meal and gluten meal-based diets is summarized in Table (3). Results showed that both chitosan 

forms significantly affected Cd and Ni retention (Fig. 2). The highest significant retained heavy 

metal concentration was recorded in fish fed fish meal-based diet, followed by those fed gluten 

meal-based diet. Moreover, the dietary fortification with CS and CSNP lowered the retention of 

the Cd and Ni, especially CSNP supplementation.  

On the other hand, no significant difference was recorded upon using CS and CSNP on the 

Cu, Zn, Fe, Pb, and Cr retention in O. niloticus (Fig. 2). However, they differed numerically; fish 

fed fish meal-based diet recorded the highest retained heavy metals, followed by those fed gluten 

meal-based diet. Furthermore, the retention of the afore-mentioned heavy metals was 

numerically declined upon fortifying diets with CS and CSNP. Moreover, the lowest retained 

heavy metal concentration was recorded in fish fed diets supplemented with CSNP, especially 

Fig. 1. Water quality values used 

in the recirculating aquaculture 

system during the experimental 

study, in comparison with their 

optimal values 
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gluten meal supplemented diets. Our study anticipates that both dietary chitosan and nano 

chitosan have the capacity to reduce metals’ accumulation in the body and protect the vital 

organs function against metal intoxication. 

Table 3. Impact of CS and CSNP on heavy metal retention (mg/kg) in O niloticus (whole fish) fed 

fish meal and gluten meal-based diets 

HM 

FM-based diets GM-based diets 

MSE 

P-value 

FM FMCS FMCSNP GM GMCS GMCSNP 
Protein source 

effect 

CS forms 

effect 

Protein source X 

CS forms effect 

Cd 0.010a 0.005b 0.004b 0.006ab 0.006ab 0.004b 0.001 0.400 0.007 0.017 

Ni 0.022ab 0.021b 0.017cb 0.019cb 0.015cb 0.012c 0.002 0.009 0.051 0.582 

Cu 0.144 0.082 0.066 0.096 0.078 0.066 0.017 0.582 0.101 0.855 

Zn 0.224 0.120 0.107 0.171 0.122 0.042 0.071 0.520 0.261 0.885 

Fe 0.395 -0.183 -0.413 -0.252 -0.396 -0.484 0.091 0.536 0.061 0.910 

Pb 0.067 0.058 0.036 0.054 0.043 0.040 0.007 0.172 0.020 0.310 

Cr 0.012 0.007 0.011 0.012 0.008 -0.448 0.185 0.331 0.391 0.387 

Each value denotes means (n=3). 

Different superscripts in each row designate significant difference (P < 0.05) by Tukey test. 

MSE: Mean standard error. 
 

CS and CSNP are regarded as impressive metal ligands, giving rise to stable complexes 

with multiple metal ions (Gamage & Shahidi, 2007). CS possesses an elevated adsorption 

capacity for various metal ions, such as Ni
2+

, Zn
2+

, Fe
2+

, Mg
2+

,
 
and Cu

2+
 in acidic condition. 

Accordingly, it has been used for the recovery of metal ions in several industries (Kurita, 

1998). The detoxification process in aquatic animals have been well documented by two main 

mechanisms, comprising intracellular ligands: cytosolic metal binding compounds, such as 

metallothionein proteins and biomineralization; the relative relevance of both detoxification 

mechanisms varied according to species (Marigómez et al., 2002). CS has the tendency to 

form coordinate bond with the heavy metal forming a complex through the donation of its 

lone pair to the vacant orbital of the heavy metal (Hussein et al., 2012). The mechanism of 

chelation of CS and CSNP in vivo can be interpreted as follows: in vivo, the total metal 

breaks down through the digestion process, then absorbed through the gastrointestinal tract; 

mainly the small intestine, entering the tissues in its active ionic (cationic) state (Goff, 2018) 

forming coordinate bonds with CS and CSNP. 

Additionally, dietary CS and nano chitosan were found to enhance the antioxidant defense 

system in fish (El-Naggar et al., 2021; Salaah et al., 2021). One of the main antioxidant 

protective molecules in cells are thiols. Thiol groups are essential for metal detoxification in 

the liver, which may involve in the removal of metals from the body through the urine and gut 

(Eliaz et al., 2006). 
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Fig. 2. Efficacy of chitosan (CS) and chitosan 

nanoparticles (CSNP) on the retention of Cd, 

Ni, Cu, Zn, Fe, Pb, and Cr (mg/kg) in O. 

niloticus (whole body) fed fish meal and 

gluten meal- based diets. In each metal, 

different alphabetical letters designate 

significant difference (P < 0.05) by Tukey 

test. 
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Thilagar and Samuthirapandian (2020) documented low Pb accumulation in the fish 

receiving dietary chitosan supplements. Setiyorini et al. (2022) studied the use of chitosan 

nanoparticles as a therapeutic agent for metal exposure in rats. Low molecular weight nano 

chitosan performed well in absorbing harmful metal in the blood circulation and gradually 

lowering its concentrations in the body. The reduction in metal content in the body was followed 

by a progressively improved body weight over the six-week nano chitosan supplementation.  

Ismaiel et al. (2015) compared plant protein-based diets to fishmeal-based diets and 

suggested that the latter might accumulate harmful substances, causing organs histopathological 

alterations. Moreover, it was noted that, the ash content was higher in FM-based diet than GM-

based diet (Table 1). Thus, it is more efficient to supplement fishmeal-based diet with CSNP that 

has higher effective chelation capacity for heavy metal compared to CS.  Small size, large 

surface and high stability may be the reasons for CSNP high ability of chelation 

(Seyedmohammadi et al., 2016; Zareie et al., 2019). The higher density of adsorption sites of 

CSNP increases the probability of coordinate bond formation between the CSNP functional 

group and heavy metals compared to CS (Yu et al., 2013). 

 CONCLUSION 

In conclusion, it was found that the retained heavy metals in fish fed GM-based diets were 

lower than those fed FM-based diets. Moreover, the supplementation of CS and CSNP to fish 

meal and gluten meal-based diets lowered the concentrations of the retained heavy metals in the 

fish whole body, particularly CSNP. So, it is preferable to use the gluten meal  in the fish diet, as 

it has lower levels of heavy metals, and it is cheaper than the fish meal. Moreover, it is 

recommended to use CS and CSNP as feed additives for fish cultured in agricultural and sewage 

wastewaters, which are always loaded with high levels of heavy metals. Furthermore, CS and 

CSNP can be used in fish finisher diets to maintain the accumulated heavy metals at permissible 

levels for the sake of the consumer's safe and health. 
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