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INTRODUCTION  

 

Eutrophication as an environmental problem affects marine ecosystems processes, the 

natural dynamic equilibrium, and the biotic composition of the respective ecosystems, 

leading to increased production of phytoplankton and development of visible algal 

blooms of serious impacts (e.g. Yang et al., 2008). Since the mid-1970s, Alexandria 
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The current study is based on daily monitoring observations to follow 

phytoplankton blooms in the Eastern Harbor (Alexandria) within a year cycle. The 

harbor ecosystem was harsh and characterized by various dynamics and variable 

conditions of a multitude of environmental factors that ultimately were considered 

strong stressors on phytoplankton development. Three red tide blooms reach 

extremely high biomass leading to water discoloration triggered in late summer-

early autumn, and during the last week of December as well. These blooms were 

considered unique as represented by newly reported red tide causative species of 

different groups never previously reported in the Egyptian Mediterranean waters as a 

red tide bloom species; Heterocapsa triquetra and Gymnodinium impudicum  

(Dinophyceae), Heterosigma akashiwo (Raphidophycea) and the centric diatom  

Thalassiosira rotula, and under influence of characterized environmental conditions. 

The highest bloom peak of H. triquetra occurred on 9 August (12.97x 10
6
 cells L

-

1
), H. akashiwo on 26 August (13.91x10

6
 cells L

-1
), G. impudicum on 16 September 

(7.12x10
6
 cells L

-1
) and T. rotula on 28 December (3.25 x 10

6
 cells L

-1
). The blooms 

of the first three species maintained much higher temperature (30.4 - 32.9 ⁰C) and 

lower salinity (28.6 - 29.3) compared with the winter bloom in December, while 

nutrient concentrations exhibit considerable variations and the N/P ratio falls down 

to a minimum with the bloom peak days. The significant contribution of physical 

forcing rather than chemical on bloom developments was statistically confirmed but 

failed to define specific controlling factor/s. The winter bloom of Thalassiosira 

rotula was a surprising and unique first winter red tide bloom in the Eastern Harbor, 

under minimum annual temperature (18.8°C - 19.6 °C), stresses the strong effect of 

NO3, NO2 and OOM on the bloom development. These blooms maintained higher 

OOM relative to inorganic nutrients. No fish mortality occurred. The present work 

offers persuasive evidence for the increased number of newly recorded red tide 

bloom-forming species in Alexandria waters. 

mailto:Mikhail.samia@yahoo.com
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coastal ecosystems experience high anthropogenic stress creating numerous ecological 

challenges; degradation of water quality is the major problem (Sultan, 1975; Mikhail 

and Halim, 2009) since coastal discharges of untreated and partially treated discharged 

effluent became a common feature of the coastline in Alexandria (EEAA, 2008). Despite 

remedial action took place by Alexandria Governorate between 1993-1997 to improve the 

marine environmental status, and prevent direct discharge input, particularly into the 

harbor, and legislation issued eutrophication due to the development associated with 

increased in population, industrialization, the expansion of irrigated agriculture, coastline 

construction and others, goes on rise and gradually intensified and widespread over new 

areas (Mikhail and Labib, 2013). Such modification impacts on coastal waters have 

been discussed everywhere (e.g. Sánchez et al., 2007). In the harbor, water exchange 

with adjacent open sea areas and the dump of large quantities of different wastes of the 

fishing and sailing boats anchoring inside the harbor, prone to its eutrophication. The 

progressive heavy eutrophication is associated with problems created by red tides and 

other noxious blooms of undesirable and negative impacts; its outbreaks have been at the 

forefront of coastal management concerns. The recurrent red tide blooms of different 

duration, magnitude and composition were the subject of intensive studies in the Eastern 

Harbor since the start of 1990s (e.g. Labib, 1994b; 1998; Mikhail, 2002; 2003; 2007; 

Mikhail et al., 2007; 2008). Several incidents of fish and invertebrate mortality were 

reported in the harbor (Mikhail et al., 2005). The results of the previous studies stressed 

the importance of some points summarized as follows; - the harbor suffers from algal 

blooms of repeated events occurred frequently in the warm seasons between April and 

October; - a variety of biological and environmental factors were implicated in the 

initiation, maintenance and decline of recorded red tide blooms in Alexandria waters;- the 

complexity of the problems surrounding the blooms and the numerous species involved 

hindered prediction and modeling efforts;- the harbor ecosystem is harsh and 

characterized by various dynamics and variable conditions of multitude of factors that 

ultimately are considered strong stressors on phytoplankton development;- specific 

physical and chemical conditions make it particularly vulnerable to annually reoccurring 

red tides and granted newly reported species to achieve dense blooms; -blooms as long-

term chronic problem are considered one facet of complex ecosystem interactions with 

anthropogenic effect.  

The current research, based on short-term sampling collection is a part of the 

monitoring program conducted in the Eastern Harbor (Alexandria) throughout a year 

cycle. The program was designed to follow up events of outbreaks of phytoplankton 

blooms at intermittent periods in such an eutrophic marine basin. The study offers 

persuasive evidence for the increased number of newly recorded red tide bloom-forming 

species in Alexandria waters and increasing knowledge and understanding of red tide 

dynamics in Alexandria waters that seem essential to face the need for effective 

monitoring and predictive capability. 
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MATERIALS AND METHODS  

 

Study area and sampling procedure 

The  Eastern Harbor is a  semi-enclosed marine basin,  located in the central part of 

Alexandria (longitudes 29
°
53' - 29

°
54'-E and latitudes 31

°
12' - 31

°
13'-N,  Fig. 1) with an 

area of about 2.53 km
2
,  average depth about 6.5 m and water volume of 15.2×10

6
 m

3
 The 

harbor is subjected to amounts of wastewater from different land sources, mainly from the 

sewer of Alexandria at its western vicinity (Qaitbey area) which receive discharged water 

from El-Mex Bay; the most eutrophic marine basin (Mikhail, 2005). 

 

Sampling stations and collections   

During the monitoring program, a weekly sampling collection was conducted at a 

fixed station (St. I, Fig.1) throughout a year cycle (March 2015- March 2016). This station 

was occupied daily during red tide periods, besides sites entire the harbor (Sts. II-VI) of 

dense water discoloration. The blooms were also followed at the other three stations along 

Alexandria Coast (El-Silsilla, El-Shatiby and Gelim, Fig.1). Seawater physical, chemical 

and biological characteristics were determined at the surface and above the bottom 

(3m.depth).  

 

 

Fig. 1. Eastern Harbor and location of sampling stations 

 

Water temperature (°C), conductivity, and pH were measured in situ using Hydro lab 

(HANA, Model HI9828-USA), transparency depth (ZSD) by a Secchi disc (30 cm 

diameter), fixed dissolved oxygen (Strickland and Parsons, 1972), and salinity by a 
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refractometer. Variations in temperature and salinity were used to calculate water column 

stability (Mamayev and Sergeyev, 1975). The stored seawater at -4
o
C was filtered 

through 0.45µm membrane filter for chemical analyses of dissolved inorganic nutrient 

concentrations (nitrite NO2, nitrateNO3, silicate SiO4, and phosphate PO4) applying the 

procedure of Strickland and Parsons (1972), oxidizable organic matter (OOM) (FAO, 

1975), fixed ammonia NH4, (Grasshoff, 1976), and estimation of chlorophyll-a (Jeffrey 

and Humphrey, 1975). Surface water samples (20 litters) were filtered through the 

plankton net (mesh size 20 µm.) to determine the standing crop. The samples were first 

examined using a light inverted microscope to identify living flagellates, and then 

preserved by the addition of 4% neutral formalin and few drops of Lugol
’
s solution 

(Throndsen, 1978). Phytoplankton cell counting expressed as cells.L
-1

 was performed 

(Utermöhl, 1958), and identification of species followed principally Tomas (1997) and 

Hallegraeff et al. (2003).  

Statistically, Pearson's correlation coefficient (r) was used to define the degree of the 

linear relationship between physical, chemical and biological variables using SPSS 13.0 

Statistical software, and stepwise multiple regression analysis was also calculated using 

Hintze model (Hintze et al., 1993).  

 

RESULTS  

 

The monitoring program, which conducted in the Eastern Harbor throughout a year 

cycle to follow up events of outbreaks of phytoplankton blooms, revealed several 

repeated outbreaks of phytoplankton blooms caused by numerous species of different 

groups. However, the current research focuses on the occurrence of some species never 

known before red tide bloom-forming species in Alexandria waters; the dinoflagellates 

Heterocapsa triquetra (Ehrenberg) Stein and Gymnodinium impudicum (Fraga and 

Bravo) Hansen and Moestrup, the raphidophycian Heterosigma akashiwo (Hada) Hada ex 

Hara and Chihara and the centric diatom Thalassiosira rotula Meunier. The first three 

species dominated the community in late summer-early autumn, while the latter one in 

winter under different environmental conditions. The bloom peaks severely reduced 

Secchi depth to vary between 0.75m and 1m and raised chlorophyll-a to extremely high 

values (Tables 1 and 2). Due to our daily observation, their blooms seem to be 

transferred into the harbor from the adjacent area.  

In general, the massive occurrence of H. triquetra, H. akashiwo and G. impudicum 

maintained higher temperature, and much lower salinity, nutrient concentrations and 

OOM compared with that of T. rotula, while pH was unchanged.  

Light brown colored water developed in the first week of August, spreads over the 

entire harbor after a couple of days and it became denser in the second week of August 

signaling existence of a heavy bloom. The bloom lasted for a weak. The population size 

with the onset of the bloom on 5 August (1.59 ×10
6
 cells.L

-1
) declared H. triquetra and H. 
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akashiwo insignificant contributors (4.8 and14.42%, respectively). However, the bloom 

developed so rapidly and the community changed dramatically on the bloom peak day; H. 

triquetra become the major constituent (12.97x 10
6
 cells L

-1
, 66.49%), and Heterosigma 

akashiwo ranked the second (2.22x10
6
 cells L

-1
, 11.39%). This peak raised the produced 

DO and biomass to extremely high values (16.8 mg l
-1

 and 17.19 µgl
-1

, respectively). 

Others species as Eutreptiella (A. da Cunha) species. (8.2%), Pyramimonas (Schmarda) 

species. (4.2 %), Aplanochytrium (Bahnweg and Sparrow) species (2.7 %), Chattonella 

antiqua (Hada) Ono (2.3%) and G. impudicum (0.6%) succeeded to achieve a noticeable 

occurrence. Despite the dramatic decrease in H. triquetra density on the next day, it was 

still the leader (1.97x10
6
 cells L

-1
, 54.67%). Beside the peak day in August, H. triquetra 

as a co-contributor shared actively another red tide peak on 16 September (1.71x10
6
 cells 

L
-1

, 10.69%).  

The species H. akashiwo peaked again in late August during the longest bloom period 

that was never previously recorded during the study. The species culminated at the 

highest of 13.91 x 10
6
 cells L

-1 
(90.06 % of the total), raising Chl a to 8.67 μg l

-1
 and DO 

to 10.08 mg l
-1

. This peak occurred under relatively high NO3 (6.56 μM), and reduced 

PO4 (0.15 μM), and NO3/PO4 ratio at 18.75. Gymnodinium impudicum was still of limited 

contribution (0.41%). Other accompanying species include Aplanochytrium sp. (3%) and 

Heterocapsa triquetra
 
(2.8 %).  

 

Table 1. Physical and chemical parameters during the red tide bloom periods 

              in the Eastern Harbor 

Periods T℃ Salinity pH DO  

(O2 L
-1

) 

OOM  

(μM) 

NO3 

(μM) 

NO2 

(μM) 

PO4 

(μM) 

SiO4 

(μM) 

5-12 Aug. 31.9-

32.9 

28.6-28.9 8.3-8.8 6.6-16.8 7.4-16.6 1.3-3.8 0.25-0.7 0.1-1.15 0.1-7.9 

17Aug.-20 

Sep. 

30.4-

31.1 

28.75-29.3 8.3-8.6 5.1-12 7.7-24 2.3-6.56 0.28-0.7 0.15-

0.55 

1.6-9 

24-29 Dec. 18.8-

19.6 

31.9-32.5 8.3-8.5 10.6-

16.8 

17.9-

33.3 

10.37-

19.8 

0.85-2 0.15-0.9 4.6-8.8 

DO- Dissolved Oxygen; OOM- Oxidizable Organic Matter 
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Table 2. Species abundance and biomass of the different bloom periods in the  

Eastern Harbor 

 

Periods Peak day Causative species St.crop  

(cellx10
6
 L

-1
) 

% to 

St.crop 

Chl.a  

(μ g L
-1

) 

5-12 Aug. 9 Aug. Heterocapsa triquetra 

Heterosigma akashiwo 

19.51 68.37 

11.71 

17.19 

17Aug.-

20 Sep. 

26 Aug. Heterosigma akashiwo 15.44 90.06 18.67 

 16 Sep. Gymnodinium impudicum 16 44.47 19.35 

24-29 

Dec. 

28 Dec. Thalassiosira rotula 4.73 68.65 14.26 

St. crop - Standing crop; Chl.a- Chlorophyll a 

 

By mid-September, another dense bloom was developed which turned the water 

reddish. This peak occurred in physical and chemical conditions similar to late August. 

However, G. impudicum became the chief component of the community )7.12x10
6
 

cells.L
-1

(, and it was followed by H. akashiwo (4.9x10
6
 cells.L

-1
,
 
30.7 %), H. triquetra 

(1.7x10
6
 cells.L

-1
, 10.6 %) and Prorocentrum micans (0.4x10

6
 cells.L

-1
, 2.57 %). The 

species association between G. impudicum and H. akashiwo seems to be strong (r = 

0.291, p< 0.05). The blooming peak raised DO to 12 mg.l
-1

. 

A unique monospecific winter bloom of the centric diatom Thalassiosira rotula 

Meunier (61.26% - 89.92%) was observed during four days in cold winter at water 

temperatures near to the annual minimum (18.9
 
°C - 19.6 °C), never has been reported as 

red tide species in the harbor, and under relatively high salinity with limited variations. 

The bloom commenced on 24 December with high NO3 (10.37 μM). Its peak on 28 

December maintained plenty of NO3 (19.75 μM) significantly higher compared with the 

previously mentioned summer-early autumn red tide bloom, intermediate concentrations 

of SiO4 and extremely high OOM. The NO3/PO4 ratio decreased gradually with the 

bloom development to reach its minimum (21.9) with the bloom peak. Thalassiosira 

rotula culminated its peak of 3.25 x 10
6
 cells L

-1
, 68.65 %, raising the produced DO to 

16.84 mg.l
-1

. The dinoflagellate Prorocentrum cordatum Ostenfeld J. D. Dodge 

succeeded to grow well under the bloom conditions, (1.08x10
6
 cells.L

-1
, 22.45%) on the 

bloom peak day. The annual survey declares T. rotula was responsible for other two 

blooms during January and March 2016. 

 

DISCUSSION 

 

Genus Hetrocapsa was previously represented in the harbor by H. circularisquama 

Horiguchi, T. with its first record (0.3x10
6
 cells.L

-1
) in May 2001 (Mikhail, 2003), and 

with densities around  0.4x10
6
 cells.L

-1 
in August 2004-2005 (Labib, 2004; Mikhail., 

2007; Mikhail et al., 2008). Regular prolonged blooms of the relatively small armored 
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dinoflagellate H. triquetra are common in the coastal and estuarine waters around the 

world (e.g. Tillman et al., 2017), including the Mediterranean (Kim et al., 1990; Litaker 

et al., 2002a; Baek et al., 2011; Tas, 2011; 2015). The present temperature and salinity 

ranges seem suitable for the massive growth of H. triquetra in contrarily with the result 

of Tas (2015) who reported the disappearance of this species in May at 23°C. The 

significant positive correlation between temperature and the abundance (r = 0.285, p ≤ 

0.05) signals its importance. Meanwhile, the yearly pattern of H. triquetra occurrence 

showed its first appearance in mid-April, its highest abundance in summer and autumn, 

and it was lowest in January 2016 (0.002x10
6
 cells.L

-1
) under a wide temperature and 

salinity range (15.3-32.9°C and 28.46-34.12, respectively). Ecologically, H. triquetra is 

often classified as a mesohaline species (Marshall and Alden, 1990), even though it is 

functionally eurythermal, euryhaline species (Yamaguchi et al., 1997; Baek et al., 

2011). The stepwise multiple regression analysis based on temperature and salinity 

variations explains 37% of the species variability. The variations in temperature and 

salinity certainly affected water stability property, which seems a prerequisite factor for 

the H. triquetra accumulation during its massive bloom periods; a significant positive 

correlation was found (r = 0.168, p ≤ 0.05). The strong positive correlation between the 

density of H. triquetra and pH values (r = 0.34, p ≤ 0.01) emphasizes the conclusion of 

Havskum and Hansen (2006) for the strong link between the high pH values observed 

with the highest abundance of the species. In laboratory experiments, the growth rate of 

H. triquetra was highest at pH 8.8 to 8.9, (Hansen, 2002), and its blooms can increase 

the pH to above 9.0 (Olesen 2001), thereby disrupting ecosystem function (Park et al., 

2018). The bloom maintained relatively low NO2 and NO3, and intermediate NH4 

concentration, and the harbor seems to be P-limited. It is reported that H. triquetra has 

the capability to produce high levels of the extracellular enzyme alkaline phosphatase, 

allowing it to escape P limitation (Hansen, 2002). The high amounts of organic 

substances with the bloom days relative to inorganic nutrient concentrations represent 

alternative nutrient sources that may favor the bloom formation (Legrand et al., 1998; 

Steidinger et al., 1998; Tas and Yilmaz, 2015). Meanwhile, H. triquetra can feed 

mixotrophically to supplement its nutritional requirements and reducing competition from 

co-occurring other dinoflagellates (Litaker et al., 2002a). It is worth to mention that high 

OOM and low salinity accompanying the highest abundance of H. triquetra reflect arrival 

influx of freshwater, which reported an important bloom triggering factor (Litaker et al., 

2002a; Park et al., 2018). 

The genus Heterosigma includes only the species H. akashiwo (Yamaguchi et al., 

2010), which causes prodigious red tide blooms that widely distributed in subpolar to 

subtropical eutrophic coastal waters (Smayda, 1998; 2006; Shikata et al., 2008). 

Heterosigma akashiwo seems to vary among different ecotypes and is environmental 

conditions dependent (Rensel, 2007; Rensel et al., 2010). This cosmopolitan alga 

exhibits a wide geographical distribution in the eutrophic waters of the Mediterranean 
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Sea (Bizsel and Bizsel, 2002; Tas and Yilmaz, 2015; Dursun and Tas, 2019), first 

reported as a few scattered cells in Alexandria waters (Mikhail, 2001). During the 

present monitoring, H. akashiwo presented throughout most of the year and detected in 

75.4% of the collected samples. The species in the context of weekly variation showed 

the highest abundance in August and September (average >2.5 x 10
6
 cells.L

-1
 & 

maximum 13.91 x 10
6
 cells.L

-1
 on 26 August), and it was traced in March 2016. The 

present temperature range (Table 1) is relatively higher than the range (24.4 to 30.9°C) 

reported by Branco et al. (2014) for its massive occurrence. However, this species was 

previously registered eurythermal and euryhaline (Strom et al., 2013; Branco et al., 

2014), offers some advantages to be a strong competitive member of the phytoplankton 

species assemblage, signaling its resilient ability to survive in different habitats 

(Bronicheski, 2014). Measured temperature seems among the most critical 

environmental factors that regulate the bloom dynamics; significant positive correlation 

found with abundance (r = 0.353, p ≤ 0.01), supporting other results (Li and Smayda, 

2000). Salinity range with the present bloom of H. akashiwo agrees with others reported 

(Honjo, 1993; Martinez et al., 2011); salinity negatively, significantly correlated with 

abundance (r = 0.306, p ≤ 0.05). Subsequently, water stability represents a prerequisite 

factor governing H. akashiwo bloom; a significant positive correlation found between ∆ 

sigma-t and abundance (0.34, p ≤ 0.01). Heterosigma akashiwo reached its highest 

abundance with relatively high NO3 (5-6.5 µM) and PO4 (up to 3 µM) concentrations; the 

latter parameter severely dropped to 0.35 µM with the progress of the bloom that reflects 

its ability for high uptake of phosphate (Watanabe et al., 1989). The plenty of ambient 

nitrogen and phosphorus concentrations and high requirement of H. akashiwo 

(Watanabe and Nakamura, 1984a) stresses the close link between its massive 

occurrence and cultural eutrophication confirming others (Honjo, 1993; Shikata et al., 

2008). The present massive bloom of H. akashiwo caused a sharp drop in the number of 

accompanied other species, and for example, the centric diatom Skeletonema costatum 

(Greville) which contributes significantly to the total standing crop in the harbor most of 

the year-round was totally excluded. Among proposed factors, allelopathic interaction 

between these two species may help explanation; H. akashiwo upon its present 

concentrations is able to cease and/or inhibit the growth of S. costatum (Pratt, 1966; 

Honjo et al., 1978). Except for the bloom effect on species diversity, no other harmful 

effects as fish mortality were observed. The relation between such conditions and the 

species composition is a focus point that prompted intensive research.  

The stepwise multiple regression analysis reflects the significant contribution (p< 

0.05) of the combined temperature, NH4, and PO4 as explain about 60% of the species 

variability.  

Identification and quantification of G. impudicum have been done using a light 

microscope during its massive occurrence. This species closely resembles Cochlodinium 

polykrikoides Margalef based on morphological features (Lee et al., 2001). Originally, G. 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Fuat%20Dursun&eventCode=SE-AU
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Seyfettin%20Tas&eventCode=SE-AU
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impudicum athecate autotrophic species (Yahia-Kéfi et al., 2005) was described 

Gyrodinium impudicum as non-toxic species of no associated harmful effects, and a red 

tide bloom-forming species during June and September in different Mediterranean areas 

with high densities between 2x10
5
-6.3x10

5 
cells.L

-1
 (Fraga et al., 1995). However, there is 

a possibility that G. impudicum might cause fish deaths due to the production of a mucous 

exopolysaccharide (Kim et al., 1999). However, no significant toxic or biologically 

hazardous compounds were detected in its extract (Kim et al., 2010).  It is the first red tide 

bloom of G. impudicum never previously recorded in Alexandria coastal waters. The 

present monitoring shows a few scattered cells of G. impudicum from May to July at an 

increased temperature range of 21.8-29.8°C and relatively low salinity between 29.2 and 

32.1. Its intensive occurrence at the measured high temperature and low salinity 

correspond well with previous data (Chang et al., 2001), and the species seems dependent 

on water stability (∆ sigma-t value at 120.11). The relatively high nitrate and low 

phosphate accompanied the bloom peak are in contrary to the observations of Giacobbe et 

al. (1996) and Yahia-Kéfi et al. (2005) that maximum abundance of Gyrodinium 

impudicum occurs under high phosphate levels versus nitrogen (nitrogen-limited 

conditions), and to the general assumption that dinoflagellates require higher phosphorus 

to face their higher contents of nucleic acids (Costas and Lopez-Rodas, 1991). In a 

culture experiment, the phosphate critical point for the growth of G. impudicum stands 

between 1.35 and 4.05 µM (Chang et al., 2001). The limited PO4 and increased OOM 

might offer some advantage to G. impodicum to dominate and form blooms since it 

utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP (Oh 

et al., 2010), and maybe attributed to its potential mixotrophic character as described by 

Jeong et al., (2005). Its restricted occurrence in summer hindered prediction and modeling 

efforts. These results provide important information for understanding the mechanism of 

G. impodicum blooms and developing technology to predict blooms of this organism in 

Alexandria waters.  

Genus Thalassiosira in Alexandria waters is well-diversified, includes 6 species; T. 

rotula, T. oestrupii, T. pseudonana, T. subtilis, T. angulata and T. anguste-lineata, 

representing important components of the community (e.g. Labib 2000a; b), as well as in 

temperate to polar regions worldwide (Karentz and Smayda, 1984; Lange et al., 1992; 

Degerlund and Eilertsen, 2010). The present harmless monospecific bloom of the 

centric diatom T. rotula lasted for a few days in cold winter under minimum annual 

temperature is considered unique as first reported under such reduced temperature, and as 

a red tide event in the harbor. The annual monitoring reveals T. rotula a perennial species 

observed in 73.85% of the samples collected and with increased frequencies in summer-

early autumn and winter-early spring. Such high productive winter periods under 

minimum annual temperature and low light fluxes detected from the measured Secchi 

disc readings are previously reported elsewhere (Krawiec, 1982; Litaker et al., 2002a). 

Several authors explain T. rotula a commonly-occurring cosmopolitan diatom that can 
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dominate phytoplankton assemblages across diverse marine habitats under a wide variety 

of environmental conditions, achieving blooms in spring (Ehrenhauss et al., 2004; 

Lunven et al., 2005; Whittaker et al., 2012; Boyd et al., 2013). Experimentally, this 

species is proved eurythermal and moderately euryhaline (Krawiec, 1982); its optimal 

growth temperature at 16ºC (Baars, 1981), and growth rates inversely correlated with 

increased temperature (Boyd et al., 2013). The present bloom of T. rotula in winter 

supports others (e.g. Glé et al., 2007; Carstensen et al. 2014) who pointed out winter 

community essentially composed of diatoms larger than 20μm (Lauderia spp., 

Thalassiosira spp., Chaetoceros spp., Skeletonema costatum), and such large dominate 

cells grow under rich nutrient conditions and mixed condition, and can only develop 

when the temperature is below a critical value and disappear where planetary warming 

increases temperature beyond their critical threshold (Cloern, 2018). The abrupt increase 

in nutrient concentrations with the bloom certainly announces the arrival of new water 

mass with high concentrations and/or resulted from mixing conditions during winter. The 

significant positive correlation between NO3, NO2 and OOM and the abundance of T. 

rotula gives clear evidence of their strong effect on the bloom abundance (r = 0.307, p ≤ 

0.05, r = 0.403 p ≤ 0.01 and r = 0.423, p ≤ 0.01, respectively), supporting Harris et al. 

(1995) and Gayoso (1998) that wide geographical distribution and massive blooms of 

Thalassiosira associate with eutrophic water. Meanwhile, the bloom peak occurred with 

high pH (8.48) that corresponds well with the experimental results of Chen and Durbin 

(1994). The stepwise multiple regression analysis indicates variations in NO2 and SiO4 

might explain 57% of the species variability. 

Although neither fish kill events or apparent human health problems were witnessed 

during these dense blooms, further studies are still needed to observe water discoloration 

periods; the harbor with rapidly changing environmental conditions, increasing number 

and magnitude of potentially harmful species is a risk area, that might affect the delivery 

of ecosystem services to society, conservation objectives and public health. 

 

CONCLUSION 

 

The current study is based on daily monitoring observations to follow phytoplankton 

blooms and red tide in the Eastern Harbor within a year cycle. Four species were 

recorded as new red tide forming species; Heterocapsa triquetra Gymnodinium 

impudicum, Heterosigma akashiwo and Thalassiosira rotula, and added to the list of red 

tide species in Egypt. The latter species was a surprising and unique, as a first winter red 

tide bloom in the Eastern Harbor, under minimum annual temperature. The significant 

contribution of physical forcing rather than chemical on bloom developments was 

statistically confirmed but failed to define specific controlling factor/s. The present work 

offers persuasive evidence for the increased number of newly recorded red tide bloom-
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forming species in Alexandria waters. Neither fish kill events or apparent human health 

problems were witnessed during these dense blooms. 
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