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INTRODUCTION  

 

Bardawil is a coastal lake/lagoon that stretches across most of the Mediterranean 

coastline of the Egypt’s Sinai Peninsula. The surrounding area is known as the eastern 

gate to Egypt, and has a long history of being a bridge between Africa and Asia. Bardawil 

lagoon is an important source for economical fish and salt production and a high diversity 

of habitat for wildlife. The lagoon is closely pure and is the slightest polluted in the entire 

Mediterranean area (Arvanitids et al., 2009; Abd Ellah and Hussein 2009)  

 The Lagoon is located in an arid, semi-desert area, where rainfall is very scarce. 

The average annual rainfall in the middle of the lagoon is 82 mm. On the other hand, the 
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Bardawil is a coastal lake/lagoon that stretches across most of the 

Mediterranean coastline of Egypt’s Sinai Peninsula. The surrounding area is 

known as the eastern gate to Egypt, and has a long history of being a bridge 

between Africa and Asia. The lake’s length is 76.37 km (extending from 

(31°03`N to 31°14`N, and 32°40`E to 33°30`E) and has a maximum width 

of 16.65 km, occupying a total surface of 518.99 km
2
. Before 2011 the basic 

dominants flora in the lagoon were Ruppia cirrhosa and Cymodocea 

nodosa.  In 2011, Halophila stipulacea became the most prominent species 

in the lake. 

The aim of this study was to determine changes in the bacterial population 

of aquatic macrophytes, sediment and water samples of Bardawila lake and 

changes in the macro-vegetation and their possible reasons. For 

bacteriological analyses Samples of water, sediments and two seagrass roots 

were collected from two sectors of Lake Bardawil, Sector I at the eastern 

side with plant cover of Halophila stipulacea and Sector II at the water- 

circulated area in the northern middle and with plant cover of Cymodocea 

nodosa. Total bacteria and total diazotrophs were present in high densities 

in all samples. ANOVA analysis indicated significant differences attributed 

to the environmental niches.  Halophila stipulacea roots support higher 

populations of diazotrophs (up to 10
10 

cfu g
-1

). 

          This study demonstrates that diazotrophs are not randomly distributed 

in the lake and are either distributed by the host plant or adapted to different 

environmental niches. The reduction in the distribution of Cymodocea 

nodosa is a result of competitive displacement by Halophila stipulacea 
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evaporation fluctuated between 72 mm in December and 246 mm in July (El-Shabrawy 

and El Sayed, 2005). The bottom sediments are texturally classified as three classes; 

clayey silt, silty clay and silty sand (Samy and El-Bady, 2014). 

Symbiotic bacteria are important for growth and survival of plants 

(Vandenkoornhuyse, et al., 2015). Most environments where bacterial nitrogen fixation 

has been found are benthic, such as seagrass (Smith and Hayasaka, 1982; Capone and 

Budin, 1982;  Shieh et al., 1989; Pereg et al., 1994; Agawin et al., 2016), salt marsh, 

mangrove, (Gamble et al., 2010), and a variety of estuarine and sediments (Burns et al., 

2002; Short et al., 2004).  

Dissolved organic carbon that is exuded from the roots and leaves of the 

seagrasses are the main carbon source for bacteria associated with seagrasses (Wetzel 

and Penhale, 1979; Moriarty et al., 1986) which includes bacteria that can provide 

nitrogen to the host plant (Welsh 2000; Cole and McGlathery, 2012). Biochemical 

processes in the nitrogen cycle, e.g., nitrification, denitrification and ammonification, 

occur at higher rates in the rhizosphere of seagrasses than in bare sediments, due to 

microbial activity (Smith et al., 1984; Caffrey and Kemp, 1990). Nitrogen-fixing 

prokaryotes found both in the phyllosphere (Agawin et al., 2016) and the rhizosphere can 

provide between 30% and 100% of the nitrogen requirement of seagrasses (Welsh, 2000; 

Sun et al., 2015).  
 Por (1971) mentioned that the basic element of the marine flora in Bardawil 

lagoon is Ruppia cirrhosa.. The seagrass Ruppia spiralis forms meadows distributed all 

over the lagoon in 1997–1998 (Dewedar et al., 2009).  El-Bana et al., (2002) Found that 

Ruppia cirrhosa dominates the eastern coast of the lake, while Cymodocea nodosa is 

dominants on the western coast of the lake. Halodule uninervis was recorded as an 

associated species near the lake-sea connection. While Abd  El-Hady et al., ( 2007) 

found C. nodosa and R. cirrhosa. The tropical seagrass,  Halophila stipulacea entered the 

Mediterranean Sea from the Red Sea after the opening of the Suez Canal in 1869 

(Ruggiero and Procaccini, 2004). The most remarkable is the replacement of the 

dominating seagrass by Halophila stipulacea in the 2011.  

 The aim of this study was to determine changes in the bacterial population of 

invasive and native seagrass, sediment and water samples of Bardawila lake and changes 

in the macro-vegetation and their possible reasons.  

 

MATERIALS AND METHODS  

 

Experimental sites 

The lake’s length is 76.37 km (extending from 31°03`N to 31°14`N, and 32°40`E to 

33°30`E) and has a maximum width of 16.65 km, occupying a total surface of 518.99 

km
2
.  Bardawil Lake is separated from the Mediterranean Sea by a sandbar that ranges 

from 0.3 to1 km in width, and 80 km long. The sandbar has a natural opening: the eastern 

inlet in the Zaranik protected area, which has never been dredged and is closed 

occasionally due to silting. There are two artificial openings, which were created in 1927, 

Boughaz I and Boughaz II (Fig. 1). 
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Fig. 1: A map of Lake Bardawil showing the two sampling sectors of operational sites. 

 

Sampling   
 Samples of water, sediments and two seagrass roots were collected from two 

sectors of Lake Bardawil, Sector I at the eastern side with plant cover with Halophila 

stipulacea  and Sector II at water- circulated area in the northern middle and with plant 

cover with Cymodocea nodosa (Figure 1). 

Halophila stipulacea was collected from Sector I in all months as flowing, sites 1, 2 

and 3 in October 2011, Sites 1 and 5 in December 2011, Sites 2 and 5 in March and April 

2012, sites 1, 4 and 5 in July 2012 and 1 and 4 in September 2012. Cymedocea nedosa 

was collected from sites 6 (Sector II) in all months. Plants were collected intact with root 

zone sediments and transported to laboratory. Water samples were aseptically collected in 

sterile brown bottles (200 ml capacity), transported to laboratory, and stored at 4 
0
C until 

bacteriological analysis completed within 48 h of sampling.  

Preparation of samples for analysis 
 Root was washed with water to remove loosely associated sediment. Dilutions of 

root samples were prepared by transferring sufficient portions of root systems into 

sampling bottles containing sterile lake water. Bottles were shaken for 60 min. and 

further serial dilutions were prepared. Sediment samples were prepared by transferring 10 

g sediment into sampling bottles containing 90 ml sterile lake water sterile lake water. 

Bottles were shaken for 60 min. and further serial dilutions were prepared. Dry weights 

of soil (105°C) were determined. Dilutions of water samples were prepared too. 

Bacteriological analyses 

 (a) The pour plate technique (Parkinson et al., 1971) was used for the enumeration 

of total culturable bacteria using polypepton-yeast agar medium (Shieh et al., 1989) with 

90% lake water; (b) Total diazotrophs were counted using the surface inoculated plate 

method and N-deficient combined carbon sources agar medium, CCM (Hegazi et al., 

1998) supplemented with 3% NaCl.  

Isolation, purification and identification of diazotrophs  

 Three agar plates were inoculated from each suitable dilution and incubated at 30 
0
C for 72 h. Representative colonies were transferred to semi-solid CCM, and measured 
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for acetylene reduction (Hegazi et al., 1980). Isolates producing > 5 nmol C2H4 culture
-1

 

h
-1

 were further purified by single colony isolation and successive streaking on CCM agar 

plates. Pure isolates were re-examined for acetylene reducing activity. Selected isolates 

were identified according to Bergey’s Manual of Systematic Bacteriology (Krieg and 

Holt, 1984). The API microtube systems, API 20E (Enterobacteriacea), API 20 NE (Non-

Enterobacteriaceae) and API 50CH Bacillaceae were used as a standardized micromethod 

(Logan and Berkeley, 1984) in addition to conventional tests such as Gram test, 

sporulation and motility. The ability of isolates to produce indole acetic acid was 

quantitatively measured according to Tang and Bonner (1947). 

Media 

The polypepton-yeast agar medium (Shieh et al., 1989) 

Contains (gl
-1

): 2.0 g polypepton, 0.5 g yeast extract, and 15 g agar in 1 liter of 90% 

lake water, adjusted to pH 7.6. 

N-deficient combined carbon sources medium, with 3% NaCl CCM (Hegazi et al., 

1998).  
 The media contained the following (gl

-1
): glucose, 2.0; malic acid, 2.0; mannitol, 

2.0; sucrose, 1.0; K2HPO4, 0.4; KH2PO4, 0.6; MgSO4, 0.2; NaCl, 30; MnSO4, 0.01; yeast 

extract, 0.2; fermentol (a local product of corn-steep liquor), 0.2; KOH, 2.0; CaCl2, 0.02; 

FeCl3, 0.015; Na2MoO4, 0.002, ZnSO4, 0.00025; CuSO4, 0.00008; sodium lactate (60%, 

v/v) 0.6 ml
-1

; pH, 7.0. Filter-sterilized solutions of biotin (0.5 l gl
-1

) and para-amino 

benzoic acid (10 l gl
-1

) were added after sterilization. 

Statistical analysis 

Statistical analysis was carried out using STATISTICA v10 (StatSoft Inc., 2011). 

RESULTS  

 

Samples of the seagrass Halophila stipulacea and Cymedocea nedosa dominate in 

Bardawil Lake were collected.  Halophila stipulacea occurred occasionally at all sites in 

Sector I, while Cymedocea nedosa was only found at site 6 (Sector II) in all months.  

 Total bacteria and total diazotrophs were present in high densities in all samples. 

ANOVA analysis indicated significant differences attributed to the environmental niches 

(Fig. 2). 

Total bacterial counts ranged from 6.67 x 10
3
 to 8.00 x 10

6 
cfu ml

-1
, 7.85 x 10

4 
to 

1.47 x 10
7
cfu g

-1
 and 1.47 x 10

5
 to 3.96 x 10

10
 g 

-1
 for water, sediment and root 

respectively. On the other hand, total diazotrophs ranged from 1.00 x 10
3
 to 9.46 x 10

6
cfu 

ml
-1

, 1.58 x 10
5
 to 2.16 x 10

7
cfu g -

1 
and 3.53 x 10

5
 to 6.07 x 10

9
 g 

-1
 for water, sediment 

and root respectively.  

In 2011, Halophila stipulacea became the most prominent species in the lake, 

Figure (2) show significant differences between the numbers of N2-fixing bacteria present 

at any given sites associated with Halophila stipulacea root and those of Cymedocea 

nedosa. Halophila stipulacea roots support higher populations of diazotrophs in summer 

months (up to 10
10 

cfu g
-1

). 
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Fig. 2: Combined statistical analysis of population of cultruble bacteria in different  months of water 

 sample along Bardawil lake. 
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 A total of 68 different isolates of N2-fixing bacteria was secured from roots and 

sediments. Most isolates obtained from sites 1, 2 , 3 and 5 in December, March and 

October (Table 1).  

 
Table (1): Taxonomic position of Halotolerant isolates associated to plants of Bardawil lagoon 

  

Code Host plant 

Environmental 

niche ARA* 

 

IAA** 

Best matched 

identity 

1r Halophila stipulacea Root 59 7.5 Bacillus coagulans 

1s Halophila stipulacea Sediment  44.7 8.3 Bacillus circulans 

1s Halophila stipulacea Root 47.4 22.5 Enterobacter cloacae 

2s Halophila stipulacea water 19 11.4 Pantoea spp 3 

2w Halophila stipulacea Root 19.7 25.0 Pseudomonas luteola 

3r Halophila stipulacea Root 43.3  6.5 Serratia liquefaciens 

4s Halophila stipulacea Sediment 38.1 10.0 Bacillus circulans 

4s Halophila stipulacea Sediment 28 8.5 Bacillus pumilus 

 4r Halophila stipulacea Root 22.6 27.3 Enterobacter sakazakii 

5r Halophila stipulacea Root 53.2 28.1 Enterobacter cloacae 

5rb Halophila stipulacea Root 33 12.2 Bacillus pumilus 

5w Halophila stipulacea Water 15.5 5.5 Klebsiella oxytoca 

5s Halophila stipulacea Sediment 66.6 16.0 Bacillus pumilus 

6r Cymodocea nodosa Root 39.8 14.8 Bacillus circulans 

6s Cymodocea nodosa Sediment 26.5 9.5 Bacillus coagulans 

* nmoles C2H4h
-1

culture
-1

;     **mg/mL culture 

 Representative isolates of diazotrophs were single-colony purified and tested for 

their acetylene reducing activities. Potential isolates, having > 5 nmol C2H4 culture
-1

 h
-1

, 

were identified by API profiles, being Gram negative Enterobacter sakazakii, Pantoea 

spp (3),  Klebsiella pneumoniae ssp pneumonia,  Pseudomonas luteola, Serratia 

liquefaciens, Serratia marcescens, and Gram positive Bacillus pumilus, Bacillus 

circulans,  Bacillus coagulans. All isolated were halotolerant, i.e., able to grow and fix 

N2 in media containing 3% NaCl.  
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DISCUSSION 

 

The results revealed that occurrence of diazotrophs depend on the presence of 

plants for a supply of organic matter. This supply may come directly from the plant as 

excretions of photosynthesis (Moriarty and Pollard, 1982; Moriarty et al. 1986). 

Energy sources for the heterotrophs may also come from the decomposition of organic 

matter in the sediment, as suggested by Kenworthy et al., (1987); O'Neil and Capone 

(1989). Communities on the surface of aquatic plant roots might be influenced by the host 

plant and environmental factors.  

Seagrass rhizosphere have higher number of diazotrophic bacteria than in  

sediments (O’Donohue et al., 1991, Hamisi et al. 2009) and bacteria in vegetated 

sediments usually show significantly higher abundance of N-cycling genes than those in 

bare sediments (Vila-Costa et al., 2016, Trias et al., 2012). Halophila stipulacea roots 

support high populations of diazotrophs (up to 10
10

 cfu g
-1

). Plant metabolites such as 

dissolved inorganic carbon, gaseous exchange, and chemical composition are known to 

be important factors controlling attached communities in aquatic ecosystems (Moriarty 

et al., 1986; Wetzel, 1993; Pereg et al., 1994).  

Nielsen et al., (2001), who studied Zostera noltii and Spartina maritima, proposed 

that high sulfate and acetylene reduction rates observed on the rhizomes and roots 

indicate the importance of these habitats for sulfate-reducing and nitrogen-fixing bacteria. 

 A decline in seagrasses has been observed worldwide, partly due to climate 

change, human activities, diseases, and increased sulfide concentrations in the coastal 

porewaters (Ugarelli et al., 2019) Possibly, subsequent decline in Cymedocea nedosa in 

lake may be due to the exhaustion of sediments or by competition. Nitrogen, especially 

ammonium in sediment is considered to be more limiting for macrophyte growth 

compared with phosphorus (Barko et al., 1991). ANOVA analysis indicated no 

significant differences in total phosphorus among sites and months.  

The high production of H. stipulacea is sustained by the high uptake rates of 

ammonium both in the leaves and the roots (Alexandre et al., 2014). Also, nitrogen 

fixation, provided by a stable microbiome, might supply this seagrass with enough 

nitrogen to sustain growth (Viana et al., 2019). 

The invasive seagrass capable of rapid expansion, with the displacement of the 

native seagrass beginning in 10–12 weeks. Invasive species are able to accelerate the 

decline of native populations under environmental stress. (Gurevitch and Padillla, 2004; 

Willette and Ambrose, 2012). 

 Most isolates obtained from Sector I that covered with Halophila stipulacea in 

December, March and October. This might be due to the low of ammonium concentration 

in these sites (76.5 -96.9 µgl
-1

) compared to other sites (Up to 740 µgl
-1

). Table (2) 

represented a comparison of some water quality parameters of Bardawil lagoon in 

different time. Ammonium is proposed to inhibit nitrogenase activity by acting as a 

decouple of the membrane potential and thereby reducing the supply of electrons to 
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nitrogenase (Laane et al., 1980). However, ammonium concentration may be inhibitory 

above a concentration of 100-200 µM (Yoch and Whiting, 1986). This is confirmed by 

significant negative correlation coefficients (r = - 0. 90, -0.99 n= 4, p<0.05) computed 

between total diazotrophs and the ammonium concentrations in October and December. 

Using ANOVA, we found Ammonia levels were significantly higher (p = 0.031*) in July 

than others months 

  

Table (2): Range and mean of water parameters compared to those of other studies. 

Parameters 

Present Study 

(2011-2012) 

2004  2004 2006-2007 2013- 2014 

(Ali et al., 

2006) 

(Sabae, 2006) (El-Halag 

et al.) 

2013) 

El-Kassas et 

al., 2016 
Water Temp.

 0
C 13.6-31.4* 

 

- 17.4-29.7 15-31.8 15.9-27.4 

Salinity ‰ 36.67-58.30* - - 37.5-53.8 38.18-62.4 

EC    mS /cm 57.3-91.1* 

* 

- - - - 

pH  8.09-8.48* 

* 

 

7.95-8.8 7.94-8.8 7.6-8.8 8.12-8.9 

NO2
-
-N µg

-1
 0.0-26.37* 

 

0-19 0.0-18.9 14-53 1.06–6.28 

NO3
-
 -N µg

-1
 7.92-263.18* 13-89 12.92-89.2 44-198 0.00–40.00 

NH4  -N µg
-1

  83.30-741.20* 

 

9-138 18-223.5 ND 0.00–140.00 

TP    µg 
-1

 90.00-135.60* 

 

10-90 - 18-148 0.54–6.44 

TBC (cfu ml
-1

) 6.67 x 10
3
 - 

8.00 x 10
6 
 

- 8 x 10
5
- 71 x 

10
7
 

- - 

TD (cfu ml
-1

) 1.00 x 10
3
 - 

9.46 x 10
6
 

- 0-460 

(Azotobacter) 
- - 

*Report project of ―Survey and ecological studies of Bardawil Lagoon‖. (Mohamed El-Sherif Goher, National 

Institute of Oceanography and Fisheries) 

This study demonstrates that diazotrophs are not randomly distributed in the lake 

and are either distributed by host plant or adapted to different environmental niches. The 

reduction in the distribution of Cymodocea nodosa is a result of competitive displacement 

by Halophila stipulacea 
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