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ABSTRACT

rass carp Ctenopharyngodon idella, fingerlings were

exposed to lethal and sublethal concentrations of mercury
and zinc. The changes in haemoglobin (Hb) haematocrit {Ht),
osmolality, branchial Na'-K'-ATPase, acetylcholinesterase
(AchE), sodium (Na"), potassium (K*) and water content were
recorded. Blood Hb and Ht showed a general trend of significant
decrease in fish exposed to lethal and sublethal concentrations of
mercury and zinc. The serum osmolality showed a significant
increase on exposure of fish to lethal and sublethal concentrations
of mercury and zinc. In fishes exposed to lethal concentration of
mercury and sublethal concentration of mercury and zinc, the
activity of branchial Na'-K"-ATPase was increased, while in case
of lethal exposure to zinc, the enzyme activity was reduced.
Serum AchE activity decreased in fish exposed to lethal
concentration of mercury and sublethal concentration of zinc. On
the other hand, the enzymatic activity was increased in fishes
exposed to lethal concentration of zinc and sublethal
concentration of mercury. In case of brain, the AchE activity
increased in fishes exposed to lethal concentration of mercury and
zinc and decreased in fishes exposed to sublethal concentration of
mercury and zinc. The concentrations of (Na*, K*) in serum, liver
and muscle were significantly increased when fish were exposed
to either lethal or sublethal treatments. The water content of liver
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and muscle increased generally, on exposure to lethal and
sublethal concentrations of mercury and zinc.

INTRODUCTION

Pollution of aquatic habitats is an inevitable problem
aquaculturists face. The intrusion of heavy metals and their salts
in aquatic environment and their accumulation in biotic system
induced several structural and functional alterations in the biota

(Abel, 1998).

Many workers have attempted to identify certain
biochemical and physiological parameters as indices of pollutants
stress on aquatic animals (Heath, 1987 & Sorensen, 1991). The
value of biochemical indices of stress lies in the fact that they
may be early warning signs, signaling a possible detrimental
effect prior to whole scale changes in population and community
structure and function potential risks to human health from (Hg)
accumulated in fish and other aquatic organisms has been a major
concern since the massive poisoning following methy! mercury
discharged into Menameta Bay, Japan in the 1950s. More
concerns have arisen about the impact of Hg on health of
indigenous people who rely on fish as a dietary staple in areas
including the Amazon basin (Barbosa et al., 1995 and Fleming et
al., 1995). Mercury has neurotoxic and teratogenic effects. Many
studies involved exposing fish to high level of inorganic mercury
(Hg) or methyl mercury (Me Hg), caused severe gill damage
(Paulose, 1987) and interfered with physiological processes
involving the gill, including gas exchange and ion regulation
(Lock et al., 1981; Stinson and Mallat, 1989).

Zinc is a potential toxicant to fish with water hardness and
pH constituting the principal modifying factors of zinc toxicity
(Everall et al., 1989). Major toxic effects of elevated
concentrations of water borne Zn are disturbances of acid-base
and ion regulation (e.g. impairment of the branchial uptake of
Ca®") disruption of gill tissue and hypoxia (Hogstrand et al.,
1994). Chronically, toxic concentrations do not affect the gills,
but cause general enfeeblement and extensive deterioration of the
liver, kidneys, heart, skeletal muscles, gonads and spleen
(Holcombe et al., 1979).
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The objective of the present work was to study and
evaluate some physiological and biochemical changes in the grass
carp in relation to lethal and sublethal exposure to mercury and
Zine. :

MATERIAL AND METHODS
Experimental animal and design:

Grass carp fingerlings samples with averape weight 20
20 g used in the present work were obtained from Delia
Breeding Station (DBS), Cairo. Fish were acclimated to
laboratory conditions for 2 weeks before experimental work,
Mercuric chloride (HgCly) and zinc chloride (ZnCly), the
toxicants were obtained frcrm Merck Company (Reapent grade)
and were mixed into solutions to provide the required
concentrations.

Groups of Fish:

Ten fish per group were exposed to the 96-hLCS50 (0.62
mg Hp++/1 or 11.46 mg Zni++/l, lethal exposure) determined
according to Salah El-Deen ef al. {1996) and scarificed after 3, 6,
12, 24, 48 and 96 hours of exposure. Other groups were expaseé
to 1710 of the 96-hLCs; (0.062 mg Hg®/1 or 1.146 mg Za™/,
sublethal exposure} and sacrificed after 1, 2, 4, 8, 16, 32 and 64
days of exposure. Control groups with no toxicant were also
included in both experiments.

Analytical Techniques:

Eight fish from each group at every interval time after
exposure were randomly selected and anesthetized in 120 mg/l
tricaine methane sulfonate (MS222) solution. Blood was obtained
by direct puncture of the heart using glass micropipette. Serum
was collected by centrifugation (8000 rpm) and was stored in a
deep freezer (-20°C) for further analysis. After decapitation of
fish, piece of white epaxial muscle and liver were taken for
further biochemical studies. Haemoglobin content (Hb) was
estimated using cyanmethemoglobin method (Van Kampen and
Zijlstra, 1961). Haematocrit percentage (Ht) was determined
according to Britton (1963).

Serum osmolality was measured with freezing point
depression osmometer. The branchial Na'-K*-ATPase activity
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was measured at 37°C and calculated as the differences between
the rate of inorganic phosphate liberated in the present and
absence of ouabain (Johanson ef al., 1977). The released
inorganic phosphorous was measured by the method of Fiske and
Subbarow (1925). The serum and brain AchE activities were
estimated the calorimetric method according to Eliman et al.
(1961) using Boheringer Mannheium Kit.

Sodium and potassium concentrations in serum, muscle
and liver were determined according to Loenn and Ockari (1982)
and measured with a flame photometer {Coming 410). Muscle
and liver water contents were determined through difference
between fresh and dry tissue weights.

Statistical Analysis: -

The results were expressed as mean + S.E.M. Data were
statistically analyzed using analysis of Variance and Newman-
Kelus test to evaluate the comparisons between means at P < 0.05
(Steel and Torrie, 1980).

RESULTS

Blood Hb in the grass carp exposed to lethal and sublethal
concentration of mercury and zinc (Table 1), showed a significant
decrease (P < 0.05). On lethal exposure to mercury, the minimum
concentration (3.58 + 0.87 g/dl} was recorded after 96 hours of
exposure. The same was observed in case of lethal exposure to
zinc, the lowest value (3.37 £ 0.29 g/dl) was recorded after 96
hours. On sublethal exposure to mercury, the lowest
concentration (3.09 + 0.26 g/dl) was recorded after 32 days, also
a significant decrease in Hb concentration was recorded. On
sublethal zinc exposure, the minimum value (2.81 + 0.23 g/dl)
was recorded after 64 days of exposure.

In Table (1), the blood Ht % in fish exposed to lethal
concentration of Hg exhibited a significant decrease and the
lowest value was (23.46 % 1.97%) after 96 hours of exposure. The
same was observed in case of lethal zinc exposure and the
minimum (%) was (20.40 + 1.89%) after 96 hours of exposure.
The same pattern of response was observed in sublethal exposure
to mercury and zinc, the corresponding values were [1723 % 1.56
(Hg) and 15.70 + 1.15 (Zn) %)] after 32 and 64 days, respectively.
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As shown in Table (2), the serum osmolality of fish
exposed to lethal concentration of mercury and zinc exhibited a
significant increase and the maximum recorded levels were
[343.50 + 5..94 (Hg) and 360.43 + 7.07 (Zn) mosm)] after 96
hours in both experiments. Also sublethal exposure exhibited a
significant increase in serum osmolality and the highest recorded
levels were [366.95 + 7.41 (Hg) and 385.65 + 3.92 (Zn) mosm]
after 32 and 64 days of exposure, respectively.

In Table (3), fish exposed to lethal concentration of
mercury and sublethal concentration of mercury and zinc
exhibited elevation in the activity of branchial Na+-K+-ATPase,
the corresponding activities were (4.21 = 0.05, 3.90 + 0.14 and
428 +x Q.05 p mol/Pifmg protein / hr) after 96 hours, 32 and 64
days of exposure, respectively. In case of lethal exposure to zinc,
a non significant decrease (P > (0.05) was observed in the enzyme
activity.

Serum AchE activity (Table 4) decreased in fishes
exposed to lethal concentration of mercury and sublethal
concentration of zinc. Also, the brain AchE was decreased in
fishes exposed to sublethal concentration of mercury and zinc. On
the other hand, the serum enzymatic activity was increased in
fishes exposed to lethal concentration of zinc and sublethal
concentration of mercury and also increased in brain of fishes
exposed to lethal concentrations of mercury and zinc.

The concentration of Na+ in serum, liver and muscle of
the grass carp exposed to either lethal or sublethal concentration
of mercury and zinc (Table 5) showed a general trend of
significant increase (P < 0.05) compared to the control values.
Regarding K+ concentration, it showed a general pattern of
significant increase in serum, liver and muscle after lethal and
sublethal exposure to mercury and zinc (Table 6).

The water content of liver and muscle of grass carp,
increased significantly on exposure to lethal and sublethal
concentration of mercury and zinc as shown in Table ( 7).

DISCUSSION

Physiological and haematological measurements have
been used as indicators of the state of fish health condition and as
a biochemical method for assessing the possible mode of action
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of stressors (Heath, 1987 & Adams, 1990). The changes in Ht and
Hb values in fish exposed to different environmental stressors
and as a result of chemical treatment have been reported by Salah
El-Deen (1991) when exposed Ctenopharyngodon idella to
diquat; and Allen (1994) in case of Oreochromis aureus exposed

to mercury.

Mazher ef al. (1987), studied the effects of exposure of
the Nile catfish Clarias lazera, to sublethal concentration of
mercury (0.4, 0.6, 0.8 and 1.0 mg Hg® / 1) and found a
progressive fall in Hb content and Ht value, and an increase in
WBCs count. The authers attributed such decrease to the
reduction of RBCs production in the bone marrow under the
action of mercury poisoning as well as to intrahepatic and
intrasplenic haemorrhage.,

Panigrahi and Misra (1980) exposed Tilapia mossambica
to a sublethal concentration of 0.5 mg/l as mercuric nitrate [Hg
(NOs); ] and found that there was a decrease in Hb content and Ht
value as a result of haemolysis and vaculization of RBCs caused
by mercury. In addition, Goel and Gupta (1985) reported a
decrease in RBCs count; Hb content and Ht value of
Heteropneustes fossilis in response to environmental exposure to
zinc for 30 days. The observed decrease in red cell indices
reflects a severe anemic state closely related to prolonged zinc
exposure,

Abo-Hegab ef al. (1989) pointed out that the Hb level in
grass carp, Crenopharyngodon idella exposed to urea decreased
throughout the experiment. They owed such decrease to
disturbances of the osmotic pressure inside and outside the cells
due to gain of water in the extracellular fluid.

In the present study, Crenopharyngodon idella was
exposed to lethal and sublethal concentrations, of mercury and
zinc showed a significant decrease in Hb content and Ht values.
This decrease could be attributed to many features such as
impairment of gas exchange by the gills, disequilibrium of the
osmotic pressure, haemolysis of erythrocytes and/or dysfunction
of the spleen and destruction of large number of erythrocytes. An
alternative explanation of the reduction of Hb and Ht is the
shrinkage of RBCs, and/or reduction in RBCs production in the
haematopoietic organs under the action of heavy metal
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concentrations as reported by Kumari and Banerjee (1993) and
Abbas (1598).

Changes in plasma osmolality have long been considered
as an indicator of stress. In fresh water fishes, an increase in
osmolality is supposed to indicate stress (Heath, 1987). If the
concentration of heavy metal in the water is high enough, there is
supposed to be a disruptive influence on the structural
organization of the gill tissue. This will influence osmotic and
ionic regulation in fish (Allen, 1993).

Stagg et al. {1992) reported that plasma osmelality and
chloride concentrations are considered as an indicator of gross
osmoregulatory dysfunction. Changes in plasma solute
concentrations will be determined not just by the ability of the
fish to maintain osmoregulatory homeostasis but also by the
osmotic and ionic gradients imposed on the fish by the changes in
environmental stressors.

In addition, Stagg et al. (1992) showed that flounder,
Platichthys flesus at Port Edgar had higher mercury levels and a
higher plasma osmolality than those from Eden. This strongly
suggests that the inhibitory effects of contaminants, such as
mercury, present at Port Edgar may cause osmoregulatory
dysfunction in flounder at this site.

In the present study, lethal and sublethal concentrations of
mercury and zinc caused a significant elevation in serum
osmolality. These changes could be attributed to either loss of
serum water or/and increase of the internal inorganic and organic
osmolytes, as a result of osmoregulatory dysfunction caused by
the toxicant. This assumption is supported by the results of Stagg
etal. (1992).

Branchial Na’, K ATPase is a key enzyme in fish
osmoregulation being central to the transport of monovalent ions
in the gills of both marine and fresh water telecst (Evans, 1987).
The enzyme has been shown to be sensitive to a wide range of
contaminants following acute and chronic exposure.

Sastry and Sharma (1980) had reported that Na*, K’
activated adenosine triphosphatase elevated by the acute exposure
to mercuric chloride, while inhibited by the chronic exposure.

Kozik ef al. (1977) observed a decrease in adenosine
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triphosphatase activity in the wall of capillaries of cerebral cortex
and assumed that the phenomenon may be indicative of an injury
to the blood-brain barrier. Similarly, Chang and Hartmann (1972)
observed injury to the endothelium of the capillaries as well as to
the surrounding galial membrane after mercuric chloride
intoxication.

In the present investigation, the branchial Na’, K* -
ATPase activity, in the grass carp showed a non 51gn1ﬁcant
alteration after lethal zinc exposure. On the contrary, Na*, K -
ATPase in the gills of the grass carp is clearly inhibited by the
lethal and sublethal exposure to mercury and sublethal exposure
to zinc intoxication. The reduction in Na*, K* -ATPase activity
observed in the present study may be due to an increased demand
for energy supply in the gill as ATPase breakdown ATP and
liberates energy. This assumption is highly supported by the work
of Lock et al. (1981) and Jagoe e al. (1996). .

The mechanism of osmoregulatory disruption and
alteration of Na* and K’ concentrations have been studied by a
number of investigators (Eddy, 1982 and Heath, 1987).
Christensen et al. (1977), reported an increase in plasma Na’
concentration of brook trout after being exposed to lead nitrate
and methyl mercury chloride at different concentrations for 2 and
8 weeks. Methyl mercury injected into flounders,
Pesudopleuromectes americanus; on a daily basis for 13 days
caused accumulation of mercury in the gills up to 24 ppm, but
this treatment showed no effect on either intracellular or
extracelular electrolytes (Schmldt Nielsen ef al., 1977). Bukley
et al. (1979) observed an increase in plasma K* concentrations of
Coho salmon, after being exposed to different concentration of
ammonia for 91 days. Exposure of sheephead in sea water to a
massive dose of copper (exceeding the 48-hLCsy) was
accompanied by a large increase in all plasma electrolytes
(Cardeilhac er al.,, 1979). The latter authers suggested that the
greatly elevated plasma potassium concentration might be the
cause of death as a result of exposure to copper in sea water.

In normally functioning kidneys, sodium and potassium
ions are reabsorbed from the glomerular filtrate and passes
through the kidney tubules (Smith et al., 1976). Since, heavy
metals are known to damage renal tubules and induce renal



Recorded changes in some biochemical indicators of 65
grass carp Ctenopharyngodon idella exposed to mercury and zinc

failure (Rojik er al., 1983), the increased levels of sodium and

potassium might be due to the renal dysfunction (Larrson, ef al.,
1985).

Tulasi et al. {1990) reported a severe alteration and
disturbance in the ionic balance in Baryrelphusa guerini exposed
to lead nitrate and lead acetate. The author attributed these
changes to the alteration in the active transport of ions. Moreover,
Haux and Larrson (1982) attributed the ionic disturbance to the
outward leakage of intercellular ions, especially potassium,
caused by lead ions toxications.

In the present study, grass carp exposed to lethal and
sublethal concentration of mercury and zinc exhibited a gradual
increase in Na' and K' ions in serum, liver and muscle. This
increase could be considered as a result of electrolyte balance
disturbance and may be attributed to the outward leakage of
intercellular ions and/or to renal failure caused by accumulation
of mercury and zinc in kidney, which may contribute to
increasing in the Na’ and K as postulated by Zaghloul (1997)
and Abbas (1998).

The activity of acetylcholinesterase, an enzyme that
modulates the amount of the neurotransmitter substance
(acetylcholine) at the nerve cell junction, was reported to vary in
different organs in response to different environmental stressors
(Coppage, 1971 and Adams, 1990). Pham and Plancade (1971)
found that, after acute cadmium intoxication, the activity of brain
AchE was increased, while chronic exposure did significantly
change the enzyme activity. Tejendra et al. (1991), observed
increase in brain AchE activity of rosy barb, Barbus conchonius
exposed to 12.6 mg/L cadmium chloride. A similar increase in
brain AchE activity was found in the sheephead minnow,
Ciprinodon variegatus exposed to lower concentration of
organophosphorous insecticide diazinon (Goodman et al., 1979).
Such increase of the enzyme activity was attributed by the authers
to represent the alarm reaction to the presence of the pollutants
and can be interpreted as an infiuence of the stressors on
cholinergic function. On the other hand, mercuric chloride was
found to produce inhibition in AchE activity in brain and spinal
cord of rats (Kozik et al., 1977). Olson and Christersen (1980)
reported that the in vitro effect of Cd in the rosy barb resemble
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those déscribed in the fathead minnow, Pimephales promelas
which also:showed AchE inhibition in presence of Cd, Hg, Cu
and Pt THese effects seem to be due to inhibition of Ca®*
functiomatipresynaptic nerve terminals (Tejendra ef al., 1991).

In: the present investigation, the AchE activity in grass
carp exposed to lethal and sublethal concentrations of mercury
and zinc: showed different patterns of responses (biphasic
response)}. while there was a general increase in AchE in brain
exposed to lethal concentration of zinc, there was an inhibition in
seruin enzyme exposed to lethal concentration of mercury. On the
other hand: inhibition of AchE activity in serum (exposed to
lethal zinc:concentration) and in brain (exposed to lethal mercury
and zinc:ooncentrations) was observed. In addition, there was an
increase: it AchE activity in serum exposed to sublethal
concentration of mercury. '

The: increase in the AchE activity could be attributed to
the alarm reaction to the presence of mercury or zinc and during
which more'nerve impulses transfer may be needed (Hanke ef al.,
1983 and Assem, 1985). However, the decrease in AchE activity
could be due to the binding of mercury or zinc ions to lipid — rich
structural component of mitochondria and subsequently affect the
activities of the enzymes like AchE which associate directly with
lipid-rich fractions, specially where integrity of the structural
components is necessary for maximum catalytic activity.
Furthermore,, the decrease in AchE activity could be due to the
decrease im synthesis of the enzyme by the inhibitory nature of
toxicants, and also to asphyxiation. Such explanation is high
supported by the work of Suresh et al. (1992) and Abu El-Ella

(1996)..

Water plays a vital role in the physiology and
biochemistry of animals for maintaining pH and several others
biochemical reactions. Zaghloul (1997) reported increase in liver
and muscle water content in Oreachromis niloticus after exposure
to mercury and zinc.

Moreover, Abbas (1998), reported increase in liver and
muscle water content of Oreochromis aureus and Clarias
gariepimus under the effect of lethal and sublethal exposure to
copper:and lead. This clevation in liver and muscle water content
i in-agreement with- Wheatherly. and Gilt (1987) who reported
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that, the depletion of muscle total protein (as observed in this
study) result in tissue hydration and an inverse dynamic
relationships between protein and water content in the liver and
muscle. This assumption agrees with the resulis of the present
investigation (increase liver and muscle water content after lethal
and sublethal exposure to mercury and zinc) and might be
attributed to reduction in metabolite activity under toxicant stress
conditions as reported by Verma and Tonk (1983).

In conclusion, many workers have stressed the need for
the establishment of normal physiological and hematological
values in connection with pollution and its effect. However, the
possibility to set a standard as a diagnostic tool is still not
definitive.
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Table (2): Changes in serum osmolality {mosm) of grass carp; Crenopharyngodon idella,

after lethal and sublethal expesure to mercury and zinc.

Lethal exposure Subletha! exposure
Metal Hp Zn Metal Hg Zn
Conc, 0.62 mg/l 11.45 mgfl Coenc. 0.062 mg/l 1.146 mg/i
Time Time
Control 248.0025.29 243032428 Control 240.3024 61 241.88x4.96
a a a
3 hours 286.66x8.27 | 253.90+2.61 1 day 248.10£7 .25 241.23£3.36
g ) zb a a
6haurs | 316.68%5.86 255752420 || 2days | 260.958.15 253.524 38
b abc b
)2 hours | 329.41%10.69 | 237.06=3.78 || ddays | 266.1064.20 | 270.33%4 58
be abed b
24 hours | 334.8628.39 319.05+8.68 " 8 days 289.91+5.32 283.76+4.12
bed
4B hours | 321.7033 87 3329326.51 || d6days | 315662697 | 295.583.75
bed d
9% hours 343,5045.94 360.43x7.07 32 days 366.95+7.41 315.5543.65
u 64 days . 385 6543.92

Table (3): Changes in branchial Na'- K*- ATPase sctivity (umol Pi/mg protein/hr) of grass

carp; Clengpharyngodon idela, after lethal and sublethal exposure to mercury and zine.

Lethal exposure Sublethal exposure
Metal Hgp Zn Metal Hg Zn
Conc. 0.62 mg/l 11.46 mg/l Conc. 0.062 mg/l 1.146 mg/l
Time Time
Controf 5.22+0.09 5.14+0.10 Control 5.05+0.17 5.2210.12
. a . a
3 hours 5.26£0.07 5.09x0.06 1 day 4.560,13 5.39:0.04
ab ab a ah
& hours 4,59x0.09 5.11£0.05 2 days 4 500.07 5.46+0.03
c abe ' ab ab
12 hours 5.04+0,08 5.25£0.05 4 days 43840,09 5.09+0.09
ab abcd abc . abc
24 bours 4,2840.12 5.1640.12 1 8 days 4.2240.17 5.0140.)2
< abede abed ac
48hours |  4.3020.08 5.19%0.09 16 days 3.990.16 4.740.09
d. abcdef cde d
96 hours 4.2120.05 5.110.11 32 days 3.9040.14 4.45+0.06
d - abcdef de d
64 days * 4.28+0.05
p )

- Data are represented as mean + SE.
- Means with the same letlers in the same column are not sigrificantly

different (P>0.05)

* Fish died.
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