Typhlodromips swirskii (Acari: Phytoseiidae): A Predator of Eriophyid and Tetranychid Mango Mites in Egypt

B. A. Abou-Awad*, A. M. Metwally**and M. M. Al-Azzazy**

*Plant Protection Dept., National Research Center, 12622 Dokki, Cairo, Egypt
**Agricultural Zoology and Nematology Dept., Faculty of Agric., Al- Azhar Univ., Cairo

ABSTRACT

The predacious mite Typhlodromips swirskii (Athias-Henriot) successfully developed to the adult stage when fed on the motile stages of the mango bud mite Aceria mangiferae Sayed, the mango rust mite Metaculus mangiferae (Attiah), the leaf coating mite Cisaberoptus kenyae Keifer and nymphs of the mango red mite Oligonychus mangiferus (Rahman and Sabra) in the laboratory at different temperatures and relative humidities. The increase of temperature degree and decrease relative humidity from 25°C and 60% R.H. to 30°C & 55%R.H. and 35 °C & 50 %R.H. shortened development and increased reproduction and prey consumption. Different eriophyid prey species promoted faster development of the predator compared to feeding on the tetranychid nymphs. The rate of egg laying (2.62, 2.23, 2.35 and 1.83 eggs/\$\partial\$/day) was recorded at the highest temperatures and lowest R.H., while the minimum reproduction (1.92, 1.72, 1.62 and 1.20 eggs/♀/day) was noted at the lowest temperature and highest R.H. when fed on the four aforementioned prey species, respectively. Life table parameters indicated that feeding T. swirskii on A. mangiferae led to the highest reproduction rate (rm = 0.216 and 0.157 females/female/day), while feeding on O. mangiferus gave the lowest reproduction rate (rm= 0.183 and 0.133) nymphs at 35°C and 50%R.H. and 25°C and 60% R.H., respectively. The adult predatory female consumed an average of 117.8 A. mangiferare, 114.18 C kenyae, 94.4 M. mangiferae motile stages and 14.58 O. mangiferus nymphs at 35°C and 50% R.H./day, while it devoured 102.8, 96.59, 90.44 and 12.35 individuals, respectively at 25°C and 60% R.H. The three eriophyid mango mites, particularly A. mangiferae, proved to be suitable prey for T. swirskii, as a facultative predator, compared to the tetranychid mango mite.

Key Words: Typhlodrompis swirskii, Phytoseiidae, Eriophyidae, Tetranychidae.

INTRODUCTION

Typhlodromips swirskii (Athias-Henriot) (= Amblyseius swirskii Athias-Henriot) has a significant role in the biological control of some mite pests in Egypt (Yousef and Shehata, 1971; Momen and El-Sawi, 1993; Abou-Awad et al., 1999). It feeds not only on phytophagous mites, but also on coccids and mealy bugs (Swirski et al., 1967; Ragusa and Swirski, 1976; Metwally et al., 1984). During a 2-year study on abandoned mango trees near Cairo, three specific eriophyid mango, i.e. Mango bud mite Aceria mangiferae Sayed, Mango rust mite Metaculus mangiferae (Attiah) and Leaf coating mite Cisaberoptus kenyae Keifer and the tetranychid. Mango red mite Oligonychus mangiferus (Rahman and Sabra) were noted associated with 85% of the samples. Their populations started to increase in May and reached their peaks in August, then tailed off in December (Al-Azzazy, 2005).

Many phytoseiids have low rates of egg production below 50% R.H. Low humidity affects development and predatory efficiency of phytoseiids (Sabelis, 1985; van Dinh *et al.*, 1988; Mangini and Hain, 1991; Abou-Elela, 2003). The present study reveals the effect of different temperature degrees and relative humidities on the development of *T. swirskii* on mango mite pests. Special attention

was also paid to the effect of eriophyid and tetranychid mites infesting mango trees on the life table parameters of the predator.

MATERIALS AND METHODS

The efficiency of T. swirskii as a predator was studied in the laboratory at different temperature degrees and relative humidities, i.e. 25±1°C & 60% R.H.; 30±1°C & 55% R.H.; 35±1°C & 50% R.H. and a 12/12 h light/dark period, against motile stages of the mango bud mite A. mangiferae, the mango rust mite M. mangiferae, the leaf coating mite C. kenvae and nymphs of the mango red mite O. mangiferus. Individuals of T. swirskii were obtained from a mass culture maintained on the eriophyid mite Eriophyes olivi Zaher and Abou-Awad. Gravid females were left for 24 h to lay eggs. Eggs were then isolated for the different biological tests. Mulberry leaf discs, Morus alba L., 2.0 cm in diameter, were used as rearing arenas in Petri dishes with upper surfaces downwards on water saturated cotton wool.

Predatory eggs were placed singly on individual arenas, and the newly hatched larvae, 50 for every test, were supplied with a food resource of each of the four aforementioned prey. Due to the difficulty of transferring the eriophyid bud mite *A. mangiferae* and the two eriophyids mango leaves *M. mangiferae*

and C. kenyae, an outer bract of heavily infested bud or a small disc 0.25 cm in diameter of heavily infested host leaves was carefully examined and the total number of individuals per each was recorded before introduced them to the arenas. Replacement of the consumed prey was carried out daily and notes on development, food consumption and reproduction were recorded twice a day. After the last moulting, males were coupled with females for mating. Males were then transferred to new arenas and individually reared until death. Every 3-4 days, the predators were transferred to new arenas, while its eggs were removed daily from the arenas. To test the sex ratio, 30 eggs were confined, singly in new arenas and the hatched larvae were reared until maturity. Life table parameters were estimated according to Hulting et al., (1990).

RESULTS AND DISCUSSION

The present results revealed that increase of temperature from 25 °C to 35 °C joined with a decrease in relative humidity from 60% to 50% enhanced faster development of *T. swirsikii*, and adult longevity was significantly shortened. The four prey mite species, *i.e. A. mangifeae*, *M. mangiferae*, *C. Kenya* and *O. mangiferus* resulted in a similar trend (Tables 1 & 2).

It is also of interest to note that increasing the temperature degree up to 35°C joined with decreasing the relative humidity enhanced a higher rate of egg laying. Moreover, feeding the predator on the eriophyid mite *A. mangiferae* resulted in the highest female fecundity followed by that of females fed on the other two eriophyid species *M. mangiferae* and *C. Kenyae*. On the other hand, feeding the predator on the tetranychid mite *O. mangiferus* gave in the lowest fecundity (Table 3).

However, these results are in agreement with that reported by Abou- Awad *et al.*, (1999) when reared the predator on the fig bud mite *Aceria ficus* (Colte) and the fig leaf mite, *Rhyncaphytoptus ficifoliae* Keifer. Also similar results were reported by El–Laithy and Fouly (1992) when reared the predator on the two spotted spider mite *Tetranychus urticae* Koch and that of Metwally *et al.*, (1984) who reared the predator on the citrus brown mite *Eutetranychus orientalis* Klien.

It is worth noting that feeding the predator on each of the four prey did not result in a significant effect on the rate of development of the different stages (Tables 1 & 2).

In the feeding activity experiment, it was noted that the eriophyid mite *A. mangiferae* was the most favourable prey to the predator followed by the other two eriophyid prey species. On the other hand, the tetranychid prey *O. mangiferus* was the least suitable prey compared with the other aforementioned prey (Tables 3–7).

The preference of the eriophyid mites as prey for the phytoseiid mites compared to the tetranychid prey was reported by several workers (Abou–Awad *et .al.*, 1989; Momen and El-Sawy, 1993; Momen, 1999, Rasmy *et al.*, 2002) and Abou–Awad *et al.*, 2005.

In addition, the daily rate of feeding capacity of the predatory females positively increased with increasing temperature degree joint with decreasing humidity, whereas the predatory immatures displayed opposite trend.

Life table parameters presented in table 7 are in harmony with the aforementioned findings. The population of T. swirskii could multiply with (23.82, 24.94 and 32.81), (19.58, 22.51 and 25.71), (22.26, 23.10 and 27.47) and (14.62, 14.34 and 18.47) net reproduction rate within a generation time of (20.10, 18.31 and 16.16 days), (20.52, 17.90 and 16.01), (21.20, 17.29 and 16.92) and (20.14, 17.05 and 15.87) when the predator fed on A. mangiferae, M. mangiferae, C. kenyae and O.mangiferus at 25 & 60; 30 & 55 and 35 °C & 50% R.H., respectively. Under these conditions, feeding T. swirskii on A. mangiferae led to the highest reproduction rate (rm = 0.157, 0.175 and 0.216 females/female/day),while feeding on O. mangiferus resulted in the lowest reproduction rate (0.133, 0.156 and 0.183). It is worth noting that the sex ratio of the progeny of females fed on motile stages of different eriophyid preys favoured females compared with feeding on O. mangiferus.

Comparing the life table parameters of *T. swirskii* with those of other workers carried out under almost similar conditions showed that the net reproduction rate (Ro) and the mean generation time (T) were 13, 17 on *T. urticae* (El-Laithy and Fouly, 1992) and 16, 17 on *E. orientalis* (Aly, 1994), respectively; but on the fig bud mite *A. ficus*, the predator population could multiply 21 times in a generation time of 20 days (Abou-Awad *et al.*, 1999). Here again, eriophyid mites proved to be more suitable prey for phytoseiid mites than tetranychids.

This study provides a basic biological

Table (1): Average of developmental durations in days of the immature stages of the predatory phytoseiid mite *Typhlodromips swirskii* fed on four mite species at different temperatures and relative humidities.

Temperature (°C) & R .H.	Sex	Egg	Larva	Protonymph	Deutonymph	Life cycle
A. mangiferae						
25 1 and 600/	9	3.08±0.39	.85 ±0.12	2.43 ± 0.24	2.51 ± 0.24	9.87±0.60a
25±1 and 60%	3	2.76±0.24	$.45 \pm 0.09$	2.07 ± 0.23	2.09 ± 0.20	$8.37 \pm 0.54a$
20.11 and 550/	7	2.92±0.01	.26 ±0.21	2.03 ±0.24	2.03 ±0.20	8.24±0.24b
30±1 and 55%	3	2.50±0.20	$.26 \pm 0.24$	1.84 ± 0.17	1.57 ± 0.18	7.17±0.39b
25 1 and 500/	9	2.36±0.35	.15 ±0.00	1.34 ±0.09	1.35 ±0.02	6.20±0.53c
35±1 and 50%	ð	2.16±0.24	$.13 \pm 0.00$	1.14 ± 0.00	1.12 ± 0.0	$5.55\pm0.20c$
M. mangiferae						
25±1 and 60%	9	3.09±0.35	.52 ±0.24	2.42 ±0.20	2.59 ± 0.09	9.62±0.23a
23±1 and 60%	7	2.93±0.27	$.34 \pm 0.20$	2.28 ± 0.24	2.42 ± 0.20	8.97±0.20a
30±1 and 55%	9	3.0±0.24	.50 ±0.07	1.63 ± 0.17	1.87 ± 0.09	8.00±0.17b
30±1 and 33%	3	2.69±0.20	$.42 \pm 0.19$	1.88 ± 0.20	1.80 ± 0.08	7.79±0.19b
27.4 1.700/	φ	2.50±0.19	$.25 \pm 0.01$	1.25 ± 0.03	1.18 ± 0.00	6.18±0.29c
35±1 and 50%	7	2.46±0.23	$.15\pm0.00$	1.14 ± 0.00	1.15 ± 0.00	5.90±0.33c
C. kenyae						
-	φ	3±0.01	.32 ±0.02	2.23 ±0.00	2.24 ± 0.00	8.79±0.67a
25±1 and 60%	2	2.86±0.24	$.22 \pm 0.00$	2.15 ± 0.19	2.22 ± 0.00	$8.45\pm0.44a$
20 1 1 550/	9,40	2.60±0.18	.41 ±0.07	2.01 ± 0.02	2.11 ±0.18	8.13±0.39b
30±1 and 55%	ð	2.57±0.27	$.25 \pm 0.09$	1.75 ± 0.20	1.75 ± 0.20	$7.30\pm0.41b$
25 1 am 4 500/	9	2.41±0.20	.24 ±0.08	1.32 ± 0.20	1.42 ± 0.17	6.39±0.56c
35±1 and 50%	3	2.25±0.24	1.13 ± 0.0	1.21 ± 0.17	1.21 ± 0.07	$5.80\pm0.49c$
O. mangiferus						
25 1 1 (00/	4	3.30±0.11	$.36 \pm 0.07$	2.27 ± 0.00	2.46 ± 0.20	9.39±0.74a
25±1 and 60%	4	3.16±0.20	30 ± 0.019	2.23 ± 0.00	2.31 ± 0.36	9.00±0.44a
30±1 and 55%	9,40	2.83±0.24	.26 ±0.00	2.08 ±0.01	2.16 ± 0.09	8.33±0.33b
30±1 and 33%	3	2.60±0.24	.21 ±0.00	1.86 ± 0.02	2.13 ± 0.20	$7.80\pm0.65b$
35±1 and 50%	9	2.40±0.20	.17 ±0.00	1.27 ±0.01	1.27 ±0.03	6.11±0.27c
33±1 and 30%	ð	2.27±0.17	$.14 \pm 0.00$	1.14 ± 0.00	1.14 ± 0.00	5.69±0.33c

Mean \pm SD: Different letters in vertical columns denote significant difference (F- test, P < 0.05, P < 0.01).

Table (2): Average durations in days of the phytoseiid mite *Typhlodromips swirskii* adults fed on different mite prey at different temperatures and relative humidities.

Pre –	Generation	Ovinosition	Post-	Longevity,	mean±SD	Life span mean±SD		
Oviposition	Generation	Oviposition	Oviposition	9	ð	9	3	
2.41±0.18	12.28±0.57a	17.75±0.40	3.16±0.19	23.32±0.35a	22.15±0.27a	33.19±0.29a	30.52±0.90a	
2.00±0.11	10.27±0.40b	16.6±0.51	3.15±0.24	21.75±0.45b	20.00±0.43b	30.00±0.20b	27.2±0.83b	
1.63 ± 0.07	7.80±0.43c	17.30±0.24	2.60±0.23	21.53±0.56b	17.75±0.53c	27.73±0.43c	23.32±0.20c	
2.90±0.20	12.50±0.24a	17.20±0.23	3.80±0.20	23.90±0.47a	22.20±0.43a	33.50±0.35a	31.20±0.85a	
2.08±0.23	10.13±0.37b	15.58±0.24	2.83±0.20	20.50±0.33b	16.7±0.20b	28.50±0.47b	24.50±0.33b	
1.41±0.09	7.60±0.54c	16.58±0.32	2.16±0.24	20.16±0.39b	17.77±.24c	26.35±0.20c	23.67±0.36b	
3.30±0.08	12.09±0.63a	18.60±0.24	4.20±0.31	26.10±0.56a	22.60±0.45a	34.89±0.83a	31.5±0.47a	
2.40±0.20	10.55±0.20b	14.30±0.32	2.80±0.24	19.50±0.27b	17.42±0.33b	27.50±0.23b	24.70±0.56b	
2.25±0.17	8.64±0.20c	16.90±0.24	3.00 ± 0.01	22.16±0.23b	18.60±0.57c	28.55±0.40b	24.48±0.63b	
4.10±0.24	13.49±0.24a	16.80±0.53	3.60±0.13	24.5±0.35a	23.60±0.39a	33.90±0.95a	32.0±1.12a	
2.58±0.20	10.90±0.30b	12.60±0.49	2.91±0.17	18.10±0.53b	15.73±0.45b	26.50±0.59b	23.55±0.97b	
2.10±0.31	8.21±0.41c	15.6±0.53	2.40±0.09	20.10±0.74b	18.63±0.24c	26.20±0.20b	24.33±0.83b	
	2.41±0.18 2.00±0.11 1.63±0.07 2.90±0.20 2.08±0.23 1.41±0.09 3.30±0.08 2.40±0.20 2.25±0.17 4.10±0.24 2.58±0.20 2.10±0.31	Oviposition Generation 2.41±0.18 12.28±0.57a 2.00±0.11 10.27±0.40b 1.63±0.07 7.80±0.43c 2.90±0.20 12.50±0.24a 2.08±0.23 10.13±0.37b 1.41±0.09 7.60±0.54c 3.30±0.08 12.09±0.63a 2.40±0.20 10.55±0.20b 2.25±0.17 8.64±0.20c 4.10±0.24 13.49±0.24a 2.58±0.20 10.90±0.30b 2.10±0.31 8.21±0.41c	Oviposition Generation Oviposition 2.41±0.18 12.28±0.57a 17.75±0.40 2.00±0.11 10.27±0.40b 16.6±0.51 1.63±0.07 7.80±0.43c 17.30±0.24 2.90±0.20 12.50±0.24a 17.20±0.23 2.08±0.23 10.13±0.37b 15.58±0.24 1.41±0.09 7.60±0.54c 16.58±0.32 3.30±0.08 12.09±0.63a 18.60±0.24 2.40±0.20 10.55±0.20b 14.30±0.32 2.25±0.17 8.64±0.20c 16.90±0.24 4.10±0.24 13.49±0.24a 16.80±0.53 2.58±0.20 10.90±0.30b 12.60±0.49 2.10±0.31 8.21±0.41c 15.6±0.53	Oviposition Generation Oviposition Oviposition 2.41±0.18 12.28±0.57a 17.75±0.40 3.16±0.19 2.00±0.11 10.27±0.40b 16.6±0.51 3.15±0.24 1.63±0.07 7.80±0.43c 17.30±0.24 2.60±0.23 2.90±0.20 12.50±0.24a 17.20±0.23 3.80±0.20 2.08±0.23 10.13±0.37b 15.58±0.24 2.83±0.20 1.41±0.09 7.60±0.54c 16.58±0.32 2.16±0.24 3.30±0.08 12.09±0.63a 18.60±0.24 4.20±0.31 2.40±0.20 10.55±0.20b 14.30±0.32 2.80±0.24 2.25±0.17 8.64±0.20c 16.90±0.24 3.00±0.01 4.10±0.24 13.49±0.24a 16.80±0.53 3.60±0.13 2.58±0.20 10.90±0.30b 12.60±0.49 2.91±0.17 2.10±0.31 8.21±0.41c 15.6±0.53 2.40±0.09	Oviposition Generation Oviposition Oviposition Quiposition 2.41±0.18 12.28±0.57a 17.75±0.40 3.16±0.19 23.32±0.35a 2.00±0.11 10.27±0.40b 16.6±0.51 3.15±0.24 21.75±0.45b 1.63±0.07 7.80±0.43c 17.30±0.24 2.60±0.23 21.53±0.56b 2.90±0.20 12.50±0.24a 17.20±0.23 3.80±0.20 23.90±0.47a 2.08±0.23 10.13±0.37b 15.58±0.24 2.83±0.20 20.50±0.33b 1.41±0.09 7.60±0.54c 16.58±0.32 2.16±0.24 20.16±0.39b 3.30±0.08 12.09±0.63a 18.60±0.24 4.20±0.31 26.10±0.56a 2.40±0.20 10.55±0.20b 14.30±0.32 2.80±0.24 19.50±0.27b 2.25±0.17 8.64±0.20c 16.90±0.24 3.00±0.01 22.16±0.23b 4.10±0.24 13.49±0.24a 16.80±0.53 3.60±0.13 24.5±0.35a 2.58±0.20 10.90±0.30b 12.60±0.49 2.91±0.17 18.10±0.53b 2.10±0.31 8.21±0.41c 15.6±0.53 2.40±0.09 20.10±	Oviposition Generation Oviposition Oviposition Oviposition Oviposition Quality 2.41±0.18 12.28±0.57a 17.75±0.40 3.16±0.19 23.32±0.35a 22.15±0.27a 2.00±0.11 10.27±0.40b 16.6±0.51 3.15±0.24 21.75±0.45b 20.00±0.43b 1.63±0.07 7.80±0.43c 17.30±0.24 2.60±0.23 21.53±0.56b 17.75±0.53c 2.90±0.20 12.50±0.24a 17.20±0.23 3.80±0.20 23.90±0.47a 22.20±0.43a 2.08±0.23 10.13±0.37b 15.58±0.24 2.83±0.20 20.50±0.33b 16.7±0.20b 1.41±0.09 7.60±0.54c 16.58±0.32 2.16±0.24 20.16±0.39b 17.77±.24c 3.30±0.08 12.09±0.63a 18.60±0.24 4.20±0.31 26.10±0.56a 22.60±0.45a 2.40±0.20 10.55±0.20b 14.30±0.32 2.80±0.24 19.50±0.27b 17.42±0.33b 2.25±0.17 8.64±0.20c 16.90±0.24 3.00±0.01 22.16±0.23b 18.60±0.57c 4.10±0.24 13.49±0.24a 16.80±0.53 3.60±0.13 24.5±0.3	Oviposition Generation Oviposition Oviposition Oviposition Proprocess Proproce	

Mean±SD: Different letters in vertical columns denote significant difference (F-test, P< 0.05, P<0.01).

Table (3): Female fecundity of *Typhlodromips swirskii*, fed on different mite prey species at different temperatures and relative humidities.

	Number of eggs laid by T. swirskii female fed on different prey species										
Temperature (°C)	A. mangifer	ae	M. mangifer	rae	C. kenyae	?	O. mangiferus				
& R.H	Mean \pm SD	Daily rate	Mean \pm SD	Daily rate	Mean \pm SD	Daily rate	Mean \pm SD	Daily rate			
25°C & 60%	34.08±1.81 ^a	1.92	29.72±0.98 ^a	1.72	30.3±1.19 ^a	1.62	20.9±1.91 ^a	1.20			
30°C &55%	35.69±1.72 ^a	2.15	32±1.16 ^b	2.60	33.1±1.15 ^b	2.31	20.50±2.70 ^a	1.62			
35°C &50%	45.36±2.11 ^b	2.62	37.00±2.17°	2.23	39.75±2.89°	2.35	28.60±2.39 ^b	1.83			

Different letters in vertical columns denote a significant difference (F-test, P< 0.05, P< 0.01)

Table (4): Feeding capacity of *Typhlodromips swirskii* fed on different mite prey species at 25°C and 60% R.H.

	S											
Predator	e	A.	Daily	M.	Daily	C.	Daily	О.	Daily			
	X	mangiferae	rate	mangiferae	rate	Kenyae	rate	mangiferus	rate			
Protonymph	2	44.91±1.17	20.79	24.9 ± 0.87	11.42	34.8 ± 0.97	17.4	8 ± 0.66	4.00			
	3	37.7±2.11	20.48	28.8 ± 0.79	13.98	22.4±1.02		7.20 ± 0.68	3.61			
Deutonymph	2	84.9±1.19	37.7	67.3±1.02	28.5	71.8±1.11	35.9	12.7±0.97	5.70			
	3	67.2±1.47	36.5	69.8±0.97	31.75	53.4±2.3	26.7	13.1±0.24	6.35			
Total	2	129.81±1.57 ^a	29.43	92.2±1.93 ^b	20.33	106.6±1.14°	26.65	20.70 ± 1.02^{d}	4.90			
	ð	104.9 ± 2.14^{a}	28.50	98.6±1.01 ^a	23.14	75.8 ± 2.13^{b}	19.28	20.30 ± 1.01^{c}	4.89			
Pre- ovipositiom	9	254.5±3.11	118.9	201.4±3.12	69.4	234.5±3.1	71.06	48±2.1	11.70			
Generation	9	384.3±6.71 ^a	31.29	293.6±2.92 ^b	23.4	341.1±2.09°	28.21	68.70 ± 1.98^d	5.09			
Oviposition	9	2058.7±85.31 ^a	115.98	1837.09±43.39 ^b	106.8	2175.4±4.1 ^a	116.9	233.1±8.12°	13.87			
Post- oviposition	9	85.83±2.79	27.16	123.2±2.19	32.4	111.1±3.21	26.4	21.50±2.1	5.90			
Longevity	2	2399.03±74.11 ^a	102.8	2161.69±39.15 ^b	90.44	2521±77 31°	96.59	302.60±7.19 ^d	12.35			
	3	1958.3±44.8 ^a	88.4	1804.3±44.18 ^b	81.27	2112.5±48.01c	93.47	268.80 ± 6.13^{d}	11.38			
Life span	2	2528.8±66.71 ^a	76.16	2220.1±40.11 ^b	66.27	2627.6±53.01°	75.3	323.3±8.71 ^d	9.53			
-	3	2063.2±57.11 ^a	67.51	1902.9±51.9 ^b	60.99	2188.3±93.11°	70.43	289.1 ± 9.11^{d}	8.86			

Mean \pm SD: Different letters in horizontal columns denote significant difference (F- test, P < 0.01).

Table (5): Feeding capacity of *Typhlodromips swirskii* fed on different mit prey species at 30°C and 55% R.H.

	S	No. of consumed prey										
Predator	e	A.	Daily	M.	Daily	<i>C</i> .	Daily	О.	Daily			
	X	mangiferae	rate	mangiferae	rate	Kenyae	rate	mangiferus	rate			
Protonymph	9	24.3±0.77	13.2	11.58±0.91	8.21	29.7±1.12	16.5	6.5±0.24	3.55			
	3	23.9 ± 0.63	14.59	15.1 ± 0.87	8.96	18.2 ± 1.23		8.2 ± 0.33	4.9			
Deutonymph	2	48.92±0.59	26.6	28.83±0.62	17.36	50.2±1.91	26.4	11.08±1.6	5.80			
	3	37.92 ± 1.12	28.09	30.8 ± 1.2	18.22	37.7±3.11		12.06 ± 0.97	6.2			
Total	2	73.22±0.99a	19.89	40.41±1.07b	13.16	79.9±2.04c	19.97	17.58±1.77d	4.70			
	3	$61.82\pm1.29a$	20.67	45.9±1.19b	13.90	55.9±3.19c	17.80	20.26±1.88d	5.64			
Pre-ovipositiom	2	141.07±2.13	70.5	125.25±3.2	60.21	164.3±3.15	68.45	23.5±4.1	9.1			
Generation	2	214.29±2.19a	20.8	165.66±4.7b	16.08	244.2±2.97c	23.1	41.08±3.12d	3.83			
Oviposition	2	2222.1±85.12a	133.9	1624.3±29.81b	104.25	1964.6±53.79c	137.3	168.08±11.13d	13.33			
Post-oviposition	2	97.3±9.11	3.9	103.25±5.39	36.48	106.6±11.06	38.07	21.9±3.2	7.53			
Longevity	Ŷ	2460.47±75.21a	113.3	1852.8±54.80b	90.38	2235.5±59.21c	114.6	213.48±14.7d	11.79			
- ,	ð	1908±27.1a	95.4	14.64±53.19b	87.7	1897.5±64.15a	108.9	213.16±11.39	11.77			
Life span	2	2533.7±45.11a	84.3	1898.7±66.71b	66.52	2315.4±63.71a	83.73	231.06±8.91c	8.71			
-	3	1969.8±23.12a	72.4	1509.9±54.12b	61.62	1953.4±72.81a	79.08	233.3±12.17c	8.8			

Mean \pm SD: Different letters in horizontal columns denote significant difference (F- test, P < 0.01)

Table (6): Feeding capacity of the *Typhlodromips swirskii* fed on different mite prey species at 35°C and 50% R.H.

	S	No. of consumed prey											
Predator	e	A.	ly rate	М.	Daily	C. Kenyae	ily rate	О.	Daily				
	X	mangiferae	ny rate	mangiferae	rate	C. Kenyae	ny rate	mangiferus	rate				
Protonymph	2	15.36±0.8	13.01	16.3±0.9	15.1	16.58±1.21	14.29	6.2±0.21	5.6				
	8	9.25 ± 0.97	9.25	12.53±0.78	12.53	9±0.92	8.33	4.63±0.24	4.63				
Deutonymph	2	22.27±1.31	19.23	18.9±1.2	18.9	26.33±1.2	21.06	7.9 ± 0.04	7.18				
	3	17±1.08	17	19.53±1.3	19.53	20.5±1.3	18.98	6.09 ± 0.07	6.09				
Total	2	37.63±2.11	15.94	35.2±2.01 ^a	16.92	42.91 ± 2.42^{b}	17.80	14.1 ± 0.88^{c}	6.40				
	3	26.25 ± 1.92^{a}	13.12	32.06 ± 1.09^{b}	16.03	29.5±2.91 ^a	13.65	10.72 ± 0.9^{c}	5.36				
Pre- oviposition	ıç	88.09±2.19	54.04	71.2±3.11	50.53	162.7±4.15	72.3	23.1±1.11	11				
Generation	2	125.72±3.61 ^a	16.11	1006.4±8.91 ^b	14	205.6±3.19°	23.8	37.2 ± 2.00^{d}	4.53				
Oviposition	2	2312.27±55.47 ^a	133.6	1744.66±67.1 ^b	105.2	2237.9±87.11 ^a	132.4	258.4±3.91°	16.56				
Post-oviposition	2	144.3±13.79	55.52	88.4±2.31	40.9	129.58±13.1	43.19	11.6±0.9	4.8				
Longevity	2	2544.6±64.17 ^a	117.8	1904.2±45.9 ^b	94.4	2530.18±63.1 ^a	114.18	293.1±6.11°	14.58				
	ð	1885.2±52.19 ^a	106.2	1384.8±63.4 ^b	68.7	1751.9±64.2a	94.19	218.3±8.7°	11.72				
Life span	2	2582.3±43.91 ^a	92.88	1939.4±63.7 ^b	73.6	2573.09±83.1 ^a	90.1	307.2 ± 12.3^{c}	11.72				
	3	1911.45±45.19 ^a	81.9	1416.8±34.11 ^b	59.8	1781.4±71.1°	72.76	229.02 ± 9.12^{d}	9.41				

Mean± SD; Different letters in horizontal columns denote significant different (F- test, P < 0.01).

Table (7): Effect of different prey species on life table parameters of *Typhlodromips swirskii* at different temperatures and R.H.

	25±1 and 60%				30±1 and 55%				35±1 and 50%			
Life table parameters	A. mangiferae	M. mangiferae	C. kenyae	O. mangiferus	A. mangiferae	M. mangiferae	C. kenyae	O. mangiferus	A. mangiferae	M. mangiferae	C. kenyae	O. mangiferus
Net reproduction rate (Ro)	23.82	19.58	22.26	14.62	24.94	22.51	23.1	14.34	32.81	25.71	27.47	18.47
Mean generation time (T.)	20.1	20.52	21.20	20.14	18.31	17.9	17.29	17.05	16.16	16.01	16.92	15.87
Intrinsic rate of increase (rm)	0.157	0.144	0.146	0.133	0.175	0.173	0.181	0.156	0.216	0.20	0.195	0.183
Finite rate of increase (e ^{rm})	1.17	1.155	1.157	1.142	1.192	1.190	1.199	1.168	1.241	1.22	1.215	1.200
50% mortality (in days)	33	34	35	34	30	28	27	26	28	26	28	26
Sex ratio (Female/total)	19/30	19/30	21/30	19/30	21/30	21/30	21/30	21/30	22/30	21/30	21/30	19/30
Sex ratio (female : male)	2.3:1	1.72:1	2.3:1	1.72:1	2.3:1	2.3:1	2.3:1	2.3:1	2.75:1	2.3:1	2.3:1	1.72:1

background about the prospects of using the phytoseiid predatory mite *T. swirskii*, as a biocontrol agent against the eriophyid mites infesting mango trees.

REFERENCES

Abou-Awad, B. A.; El-Sawaf, B. M. and Abdel-Khalek, A. A. 1999. Impact of two eriophyid fig mites, *Aceria ficus* and *Rhyncaphytoptus ficifoliae*, as prey on postembryonic development and oviposition rate of the predacious mite *Amblyseius swirskii*. Acarologia, 40: 367-371.

Abou-Awad, B. A.; Metwally, A. M. and Al-Azzazy, M. M. 2005. Environmental and biological aspects of two eriophyid olive mites in Egypt: *Aceria oleae* and *Tegolophous hassani*. Z. Pflanzenkrankh. Pflanzensch., 112: 287-303.

Abou-Awad, B. A.; Nasr, A. K.; Gomaa, E. A. and Abou-Elela, M. M. 1989. Life history of the predatory mite *Cydrodromella negevi* and the

effect nutrition on its biology (Acari: Phytoseiidae). Insect. Sci. Appl., 10: 617-623.

Abou-Elella, G.M. 2003. Effect of eriophyid prey species and relative humidity on some biological aspects of the predatory mite, *Proprioseiopsis* (*Amblyseius*) *lindiquisti*(Acari: Phytoseiidae): Egypt. J. Biol. Pest Cont., 13: 31-33.

Al-Azzazy, M. M. 2005. Integrated management of mites infesting mango trees. Ph. D. Thesis, Al-Azhar Univ., Fac. Agric.

Aly, F. S. 1994. Biological and ecological studies on some predacious mesostigmatic mites with special reference to the family Phytoseiidae. Ph. D. Thesis, Cairo Univ., Fac. Agric.

El-Laithy, A. Y. M. and Fouly, A. H. 1992. Life table parameters of the two phytoseiid predators *Amblyseius scutalis* (Athias-Henriot) and *A. swirskii* A.-H. (Acari: Phytoseiidae) in Egypt. J. App. Ent., 113: 8-12.

Hulting, F. L., Orr. D. B. and Obrycki, J. J. 1990. A computer program for calculation and statistical

- comparison of intrinsic rates of increase and associated life table parameters. Florida Entomol., 73: 601-612.
- Mangini, A. C. Jr. and Hain, F. P. 1991. Vapor pressure deficit differentially affects laboratory populations of *Metaseiulus occidentalis* and *Neoseiulus fallacies* (Acarina: Phytoseiidae) reared together. Environ. Entomol., 20: 823-831.
- Metwally, A. M.; Abou- Elnaga, M. M., Taha, H. A. and Hoda, F. M. 1984. Studies on feeding, reproduction and development of *Amblyseius swirskii* A.-H. (Acarina: Phytoseiidae). Agric. Res. Rev., 62: 233-236.
- Momen, F. M. 1999. Biological studies of *Amblyseius lindquisti*, a specific predator of eriophyid mites (Acari: Phytoseiidae: Eriophyidae). Acta Phytopathol. Entomol. Hung., 34: 245-251.
- Momen, F. M. and El-Sawi, S. A. 1993. Biology and feeding behaviour of the predatory mite *Amblyseius swirskii* (Acarina: Phytoseiidae). Acarologia, 34:199-204.
- Ragusa, S. and Swirski, E. 1976. Feeding habits, postembryonic and adult survival, mating, virility and fecundity of the predacious mite *Amblyseius swirskii* (Acarina: Phytoseiidae) on some coccids

- and mealy bugs. Entomophaga, 22: 383-392.
- Rasmy, A. H.; Momen, F. M. and Zaher, M. A. 2002. Dietry influence on life history and predation of the phytoseiid mite *Amblyseius deleoni*. F. Bernini, R. Nonnelle, (eds) Acarid Phylogeny and Evolution: 319–323.
- Sabelis, M. W. 1985. Reproduction. In: Helle, W. and Sabelis, M.W. (eds.): Spider mites: Their biology, natural enemies and control, 73-82. World Crop. Pests, Vol. 1 B, Elsevier, Amsterdam.
- Swirski, E.; Amitai, S. and Dorzia, N. 1967. Laboratory studies on the feeding, development and reproduction of the predacious mites *Amblyseius rubini* Swirski and Amitai and *Amblyseius swirskii* Athias- Henriot (Acarina: Phytoseiidae) on various kinds of food substances. Israel J. Agric. Res., 17: 101-119.
- Van Dinh, N.; Sabelis, M.W. and Janssen, A., 1988. The influence of humidity and water availability on the survival of *Amblyseius idaeus* and *Amblyseius anonymous* (Acarina: Phytoseiidae). Exp. Appl. Acarol., 4: 27-40.
- Yousef, A. A. and Shehata, K. K. 1971. Mites associated with pome fruits trees in URA. Z. Ang. Entomol., 67: 360-370.